1997 Baseline Monitoring Report

Groundwater and Soils Remediation Systems
Texaco Tutu Service Station
St. Thomas
U.S. Virgin Islands

17 December 1997

Erler & Kalinowski, Inc.

Consulting Engineers and Scientists 1730 So. Amphlett Boulevard, Suite 320 San Mateo, California 94402-2714 (650) 578-1172

Fax: (650) 578-9131

260186

Texaco Tutu Service Station - St. Thomas, U.S. Virgin Islands Groundwater and Soils Remediation Systems 1997 Baseline Monitoring Report Table of Contents

1. INTRODUCTION	1-1
1.1. Purpose	1-1
2. SITE DESCRIPTION AND HISTORY	
2.1. Location 2.2. Environmental Investigations 2.3. Chemicals of Concern 2.4. Remediation System Construction	2-1 2-1
3. HYDROLOGY	
3.1. Water Bearing Units	3-1
4. DNAPL ISSUES	4-1
4.1. DNAPL Presence 4.2. Well MW-16	
4.2. Well MW-16	5-1
5.1. Groundwater Sampling and Analysis 5.2. LNAPL 5.3. Benzene Concentrations 5.4. Chlorinated VOC Concentrations	5-1 5-1 5-1
6. CONCLUSIONS	6-1
6.1. DNAPL 6.2. Service Station Treatment System Operation 6.3. Vitelco Property Treatment System Operation	6-1
7. REFERENCES	7-1

Texaco Tutu Service Station - St. Thomas, U.S. Virgin Islands Groundwater and Soils Remediation Systems 1997 Baseline Monitoring Report Table of Contents

LIST OF TABLES

1 Baseline Groundwater Elevations - 4 December 1997

LIST OF FIGURES

1	Location of Tutu Area, St. Thomas
2	Groundwater Monitoring Well Locations
3	Groundwater Countour Map Shallow Wells; 4 December 1997
4	BTEX Concentrations in Groundwater - October to November 1997
SA .	Concentrations of Benzene (ug/L) Detected in Groundwater October to
	November 1997
B	Concentrations of Benzene (ug/L) Detected in Groundwater
	May - June 1994
6	Concentrations of Total Chlorinated VOCs in Groundwater - October
	to Nov 1997

LIST OF APPENDICES

Α	Start-Up Monitoring Program - Tables 1 & 4
В	Historical Groundwater Elevation Data
C	Laboratory Analytical Data & Field Notes

1. INTRODUCTION

1.1. Purpose

This report documents the baseline monitoring activities performed during the fall of 1997 prior to startup of the Texaco Tutu Service Station groundwater and soils remediation systems, St. Thomas, U.S. Virgin Islands. Groundwater elevations were measured and groundwater samples were collected at selected monitoring wells as outlined in the Start-up Monitoring Program (EKI, 1997). (For reference, Tables 1 and 4 are included in Appendix A.)

The groundwater samples were analyzed for aromatic and chlorinated volatile organic compounds. The potentiometric and chemical data provide a baseline "snapshot" of conditions in the vicinity of the Service Station prior to the start of remediation.

1.2. Report Organization

The topics addressed in this report include:

- Site Description And History
- Hydrology including a discussion of historical groundwater elevation data as requested by DPNR in its 5 November 1997 letter to Texaco Caribbean Inc.
- DNAPL Issues
- Groundwater Analytical Data October-November 1997
- Conclusions

2. SITE DESCRIPTION AND HISTORY

2.1. Location

The Texaco Tutu Service Station ("Service Station") is located in the upper Turpentine Run basin in Estate Anna's Retreat in east-central St. Thomas, U.S. Virgin Islands (Figures 1 and 2). The Service Station is located at the northeast corner of the intersection of Highways 38 and 384. Since it was built in 1964, the Service Station has been in continuous operation as a retail outlet for gasoline and diesel fuel.

2.2. Environmental Investigations

In 1987, it was suspected that petroleum hydrocarbons had been released from the Service Station's underground fuel storage tanks. These tanks and associated piping were removed in 1988 (Lebron Associates, 1990) and replaced with new storage and piping facilities at a different location in the west area of the Service Station.

During 1993 and 1994, environmental investigations were performed that revealed the occurrence of a plume of petroleum hydrocarbons in groundwater extending downgradient to the south of the Service Station. The gasoline constituents emanate, at least in part, from the location of the former underground storage tanks at the Texaco Tutu Service Station. Based upon Geraghty & Miller (1995), the chlorinated VOCs emanate from sources upgradient of the Service Station and have migrated to groundwater and soil gas beneath the Service Station.

2.3. Chemicals of Concern

The chemicals of concern consist of gasoline constituents and chlorinated volatile organic compounds:

Benzene 1,2-Dichloroethane ("1,2-DCA") Vinyl Chloride ("VC")

Toluene 1,2-Dichloroethene ("1,2-DCE") Methylene Chloride ("MC")

Ethylbenzene Tetrachloroethene ("PCE")

Xylenes Trichloroethene ("TCE")

2.4. Remediation System Construction

Two separate remediation systems were constructed. Construction was completed in the fall of 1997. The larger system was constructed at the Service Station and the smaller system was constructed on the Virgin Islands Telephone Company ("Vitelco") property located approximately 450 feet south of the Service Station, as shown on Figure 2.

Groundwater extraction wells were constructed at the down-gradient property line of the Service Station to remediate and limit migration of petroleum compounds. Groundwater extraction wells were also constructed near the northern boundary of the Vitelco property to control further migration of the petroleum hydrocarbon plume down-gradient of the Service Station. At each groundwater extraction location, treatment units are housed in self-contained units. Treated water will be discharged to the storm sewer under a TPDES permit.

At the Service Station, a soil vapor extraction ("SVE") system, including three SVE wells constructed in the vicinity of the former tank excavation, was constructed to remediate soil that contains elevated concentrations of petroleum hydrocarbons. A catalytic oxidizer will provide off-gas control. Extracted groundwater from two groundwater extraction wells will be treated by air stripping followed by catalytic oxidation for off-gas control. At the Vitleco property, extracted groundwater from two groundwater extraction wells will be treated by air-stripping.

3. HYDROLOGY

3.1. Water Bearing Units

The available hydrogeologic data indicate that the water-bearing units in the vicinity of the Service Station consist of fractured bedrock overlain by fine-grained sediments. These two units are hydraulically connected and the groundwater system is unconfined. Most groundwater production is from bedrock in zones of open fractures (Jordan and Cosner, 1973).

3.2. Historical Review of Groundwater Elevations

Limited historical groundwater elevation data are available for the vicinity of the Service Station. The available data for the time period between 1966 and 1994 include:

- Figure 4 Observed Water Levels January 1966, (Gartner Lee International, Inc., 1993)
- Figure 7 Generalized Potentiometric Surface (9/11/87) Tutu Area, St. Thomas, Virgin Islands, (Geraghty & Miller, Inc. 1992)
- Water-Table Contour Map, In Feet Above Sea Level Upper Tutu Aquifer, March 24, 1992, (Hydrogeologic Associates U.S.A. Inc., 1993)
- Groundwater Contour Map, Shallow Wells May 23-24 1994, (Erler & Kalinowski, Inc., 1995a)

These contour maps are included in Appendix B. Another groundwater map from 1965 (Jordan and Cosner, 1973) was reviewed but not used in this analysis because of uncertainties in locating the Service Station on the map.

Prior to 1987 there were numerous commercial and supply wells operating in the Tutu valley. Between July and September 1987, DPNR closed 13 commercial and 5 private wells in the Tutu area (Geraghty & Miller, 1995). It is our understanding that pumping is ongoing in only one well (i.e., Four Winds I) at the present time.

Data for January 1966 (Appendix B, Figure 4, Gartner Lee International Inc., 1993) show a groundwater elevation at the Tutu Texaco Service Station of about 140 to 150 feet above sea level. In September 1987, after DPNR closed commercial and private wells, the groundwater elevation at the Service Station was about 165 feet (Appendix B, Figure 7, Geraghty & Miller, 1992). The September 1987 data set apparently represents the recovering groundwater potentiometric surface after the close of the wells. The March 1992 contour map (Appendix B, Hydrogeologic Associates. U.S.A. Inc., 1993) and the May

1994 contour map (EKI, 1995a) illustrate groundwater elevations at the Service Station on the order of 163-165 feet above sea level.

According to Geraghty & Miller (1995) there are seasonal groundwater elevation fluctuations on the order of approximately 2-5 feet based on water level measurements in Tutu valley wells taken during November 1992 and May 1994. The average annual rainfall in the Tutu area is about 42 inches with about half of the precipitation occurring in the months of August, September, October, and November although there are frequently below- or above-average years (Hamlin, 1985). The 1966 annual rainfall was slightly lower than average at 39.88 inches (Hamlin, 1985). Therefore, based on the 1966 groundwater contour map (Gartner Lee International, Inc., 1993) and a seasonal fluctuation of about 5 feet, the apparent historical low groundwater elevation at the Service Station is estimated to be approximately 140 feet above sea level. On the basis of groundwater elevation data from May 1994 and December 1997, the groundwater elevation at well MW-16, located upgradient of the Service Station, is about 5-10 feet higher than the Service Station groundwater elevation. Therefore, the apparent historical low groundwater elevation at well MW-16 is estimated to be approximately 145 feet above sea level.

3.3. Baseline Groundwater Elevations - 4 December 1997

Baseline groundwater level measurements were taken on 4 December 1997 by Fluor Daniel GTI. The groundwater level measurements and calculated groundwater elevations are summarized in Table 1. A groundwater contour map for baseline shallow wells (i.e. wells screened down to approximately 45 feet below ground surface) is shown on Figure 3. Note that well MW-2 was not gauged because a car reportedly was parked over it making the well inaccessible. Well MW-7 was not gauged because a Vitelco shipping container was apparently located over the well making it inaccessible. Data for the Tillet well are not contoured because the measuring point at the Tillet well (i.e., top of casing) has not been surveyed. The Four Winds I well level measurement reflects active pumping of groundwater from this well at the time groundwater level measurements were conducted. As shown on the groundwater contour map, Figure 3, the pumping of the Four Winds I well had a local effect on groundwater elevations measured at neighboring well CHT-1. Baseline groundwater elevation measurements were intended to be taken at well VE-1 (formerly TT-4; see Appendix A). However, well VE-3 was inadvertently measured instead of VE-1.

The difference between the known historical low groundwater elevation at the Service Station (approximately 140 feet above sea level) and the 4 December 1997 baseline elevation at groundwater monitoring well TT-1 of approximately 166 feet above sea level is approximately 26 feet. The difference between the known historical low groundwater elevation at monitoring well MW-16 (estimated to be approximately 145 feet above sea level) and the

4 December 1997 baseline groundwater elevation of approximately 178 feet above sea level is approximately 33 feet.

4. DNAPL ISSUES

4.1. DNAPL Presence

Review and evaluation of available groundwater data for chlorinated VOCs discussed in Geraghty & Miller (1995) indicates that there is a possibility that dense non-aqueous phase liquids (DNAPLs) are present in the Tutu area. Between September 1987 and January 1988, water samples from the Tillet well were reported to contain tetrachloroethylene ("PCE") at a concentration of 2,040 ug/L, greater than 1% of the maximum solubility of PCE in water. As discussed in Geraghty & Miller (1995), such concentrations are suggestive of DNAPL in the subsurface.

4.2. Well MW-16

Highest chemical concentrations in the vicinity of the Service Station have been detected in groundwater from monitoring well MW-16, which is located upgradient of the Service Station and north of the Curriculum Center. If DNAPL persists in the subsurface, it likely occurs in this area where chemical concentrations in groundwater are highest.

Because DNAPL mobilization is most likely to occur during periods of extreme hydraulic stress, groundwater extraction at the Service Station will be conducted such that groundwater head fluctuations do not exceed what has been experienced historically. For example, the Service Station system will be operated such that groundwater elevations at monitoring well MW-16 do not drop below an elevation of approximately 145 feet above sea level, the estimated historical low. Similarly the system will be operated such that downward gradients measured at the MW-1/MW-1D well pair do not exceed 26 feet which is the historical maximum downward gradient measured at these wells as reported in Geraghty & Miller, 1995.

5. GROUNDWATER ANALYTICAL DATA

5.1. Groundwater Sampling and Analysis

Most groundwater wells included in the Baseline Monitoring Program (See Table 1 of Appendix A and Figure 2) were sampled on 7 and 8 October 1997. Groundwater extraction wells TEW-2 and TEW-2D, located at the Vitelco property, were sampled on 20 November 1997. Power problems with the wells prevented sampling during the 7 and 8 October 1997 sampling event. Well MW-7 was not sampled because it could not be located. It is believed to be under a Vitelco shipping container. A groundwater sample was intended to be taken at well VE-1 (formerly TT-4; see Appendix A). However, well VE-3 was inadvertently sampled instead of VE-1. Sampling was performed by Fluor Daniel GTI and its subcontractor Caribbean Hydro-Tech Inc. Analyses were performed by NEI/GTEL.

Sample data, QC data, chain-of-custody forms, and field notes are included in Appendix C. Note that QC data are included only for samples from wells located at the Service Station taken on 7 and 8 October 1997. Note that some of the samples are shown as exceeding the hold time, (i.e., VE-3, shown on laboratory data sheets as

TT-4, MW-1, MW-1D, and MW-16.) However, since the exceedence was one day, the data are thought to be usable. The QC data for samples from wells TEW-2 and TEW-2D, located at the Vitelco property, are not currently available due to the closure of the NEI/GTEL laboratory in Florida. Therefore, data for these two samples have not been verified.

5.2. LNAPL

Monitoring wells TEW-1, TEW-1D, TT-2, and VE-3 were monitored for light, non-aqueous phase liquids ("LNAPL") using an oil-water interface probe. No LNAPL was detected in these wells.

5.3. Benzene Concentrations

The plume of gasoline constituents in groundwater that emanates from the area of the Service Station can be delineated by the extent of benzene in groundwater. This is the areal extent of groundwater that is targeted for remediation. Figure 4A presents the baseline groundwater data for benzene, toluene, ethylbenzene, and xylenes ("BTEX"). Figure 5A illustrates the areal extent of benzene based on the baseline groundwater data. Figure 5B shows the areal extent of benzene based on past groundwater data from May-June 1994.

Both data sets show that the highest concentrations of benzene were detected in groundwater from well TT-1: 16,000 ppb in October 1997 and 21,000 ppb in May-June 1994. The major difference between the two data sets is that benzene was not detected in groundwater from either the Vitelco Property shallow groundwater extraction well TEW-2 or deep groundwater extraction well TEW-2D. In 1994, 21 ppb of benzene was detected in groundwater at monitoring well MW-7 which is located approximately 20 feet east of groundwater extraction wells TEW-2 and TEW-2D.

5.4. Chlorinated VOC Concentrations

Chlorinated VOCs that have been discharged by other parties from upgradient sources will also be extracted as part of the groundwater extraction system and will be treated prior to discharge. Concentrations of total chlorinated VOCs detected in groundwater from the baseline sampling event are shown on Figure 6. The highest concentration of total chlorinated VOCs, 3,400 ppb, was detected in groundwater from well MW-16, comparable to the 1994 result of about 3,500 ppb. In general, the total chlorinated VOC concentrations detected in groundwater during the baseline sampling event are the same order of magnitude as the 1994 data (EKI, 1995a).

6. CONCLUSIONS

6.1. DNAPL

Historical and December 1997 baseline groundwater elevation data indicate that groundwater flow in the vicinity of the Service Station is to the south. The apparent low historical groundwater elevation at the Service Station is approximately 140 feet above sea level. The apparent low historical groundwater elevation at groundwater well MW-16 near the Curriculum Center is approximately 145 feet above sea level. During treatment system shakedown and start-up, the upgradient area near well MW-16, located near the Curriculum Center, will be closely monitored so as to mitigate against the potential for mobilizing DNAPL. The system will be operated such that groundwater elevations at well MW-16 do not drop below an elevation of approximately 145 feet above sea level. Similarly the system will be operated such that downward gradients measured at the MW-1/MW-1D well pair do not exceed approximately 26 feet.

6.2. Service Station Treatment System Operation

The baseline BTEX concentrations at the Service Station are, in general, lower than the BTEX concentrations that were used to develop treatment system influent design concentrations. LNAPL was not detected at wells TEW-1, TEW-1D, TT-2, or VE-3. Therefore, it does not appear that modifications to the Service Station groundwater extraction and treatment system or its operation are needed. Accordingly, the shakedown and start-up of the Service Station system will proceed as planned.

The baseline chlorinated VOC concentrations at the Service Station are significantly lower than the VOC concentrations that were used to develop treatment system influent design concentrations. It is possible that when the Service Station system begins operation, actual treatment system influent chlorinated VOC concentrations will be lower than influent design concentrations. Lower treatment system influent chlorinated VOC concentrations would result in less HCl being emitted from the catalytic oxidizer into the atmosphere. Therefore, it appears likely, based on the October -November 1997 baseline data, that less than 3 lbs/day of HCl would be emitted into the atmosphere. Therefore, no adjustments are required to the Service Station groundwater extraction and treatment system or its operation.

6.3. Vitelco Property Treatment System Operation

It does not appear that modifications to the Vitelco property treatment system or its operation are needed. BTEX compounds were not detected in groundwater from wells located at the Vitelco Property. Therefore, it appears that the gasoline plume does not extend to the Vitelco Property. TCI proposes to sample the Tillet well during the shakedown period to better define the leading edge of the plume. Accordingly, the shakedown and start-up of the Vitelco property treatment system will proceed as planned.

7. REFERENCES

Erler & Kalinowski, Inc., 1995a, Groundwater and Soils Remediation Program, Texaco Tutu Service Station, St. Thomas, U.S. Virgin Islands, 13 April 1995.

Erler & Kalinowski, Inc., 1995b, Technical Memorandum 1, Basis of Design for the Groundwater and Soils Remediation Source Control program, Texaco Tutu Service Station, St. Thomas, U.S. Virgin Islands, 26 June 1995.

Erler & Kalinowski, Inc., 1997, Texaco Tutu Service Station - Groundwater and Soils Remediation Systems, Proposed Start-Up Monitoring Program, St. Thomas, U.S. Virgin Islands.

Gartner Lee International, Inc., 1993, Simulation of Groundwater Flow in the Upper Turpentine Run Basin.

GCL Environmental Science and Engineering, 1994, Phase 1 Remedial Investigation Report, St. Thomas, U.S. Virgin Islands, revised 10 June 1994.

Geraghty & Miller, Inc., 1992, Technical Memorandum I, Tutu Wells Site, St. Thomas, U.S. Virgin Islands, April 1992.

Geraghty & Miller, 1995, Phase II Remedial Investigation, Tutu Wells Site, St. Thomas, U.S. Virgin Islands, 3 volumes, dated 6 April 1995.

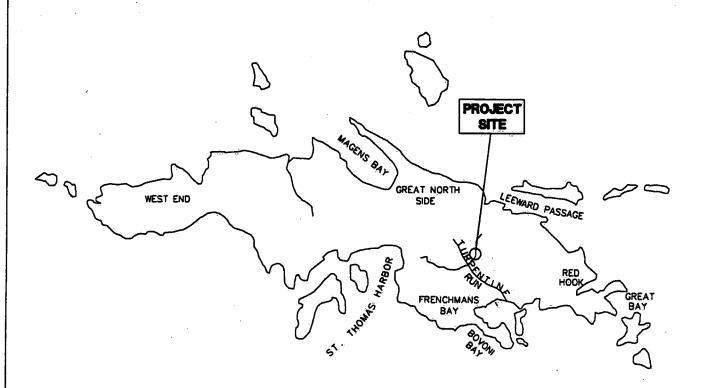
Hamlin Consulting Engineers, Inc., 1985, Investigation and Report on Water Demand and Capability of Tillet Well.

Hydrogeologic Associates U.S.A., Inc., 1993, Geohydrologic Analysis and Water Quality Data for the Upper Tutu Aquifer, St. Thomas, Virgin Islands.

Jordon, D.G. and Cosner, O.J., 1973, A Survey of the Water Resources of St. Thomas Virgin Islands, U.S. Geological Survey Open-File Report, 1973, 55 pp.

Lebron Associates, January 1990, Final Report of Tanks Removal at Texaco Caribbean, Inc.'s Tutu St. Thomas, USVI Service Station, (with) Analysis of Laboratory Results for Soil Sampling Activities, Texaco Service Station, Tutu, St. Thomas, U.S. Virgin Islands.

TABLE 1 BASELINE GROUNDWATER ELEVATIONS 4 DECEMBER 1997

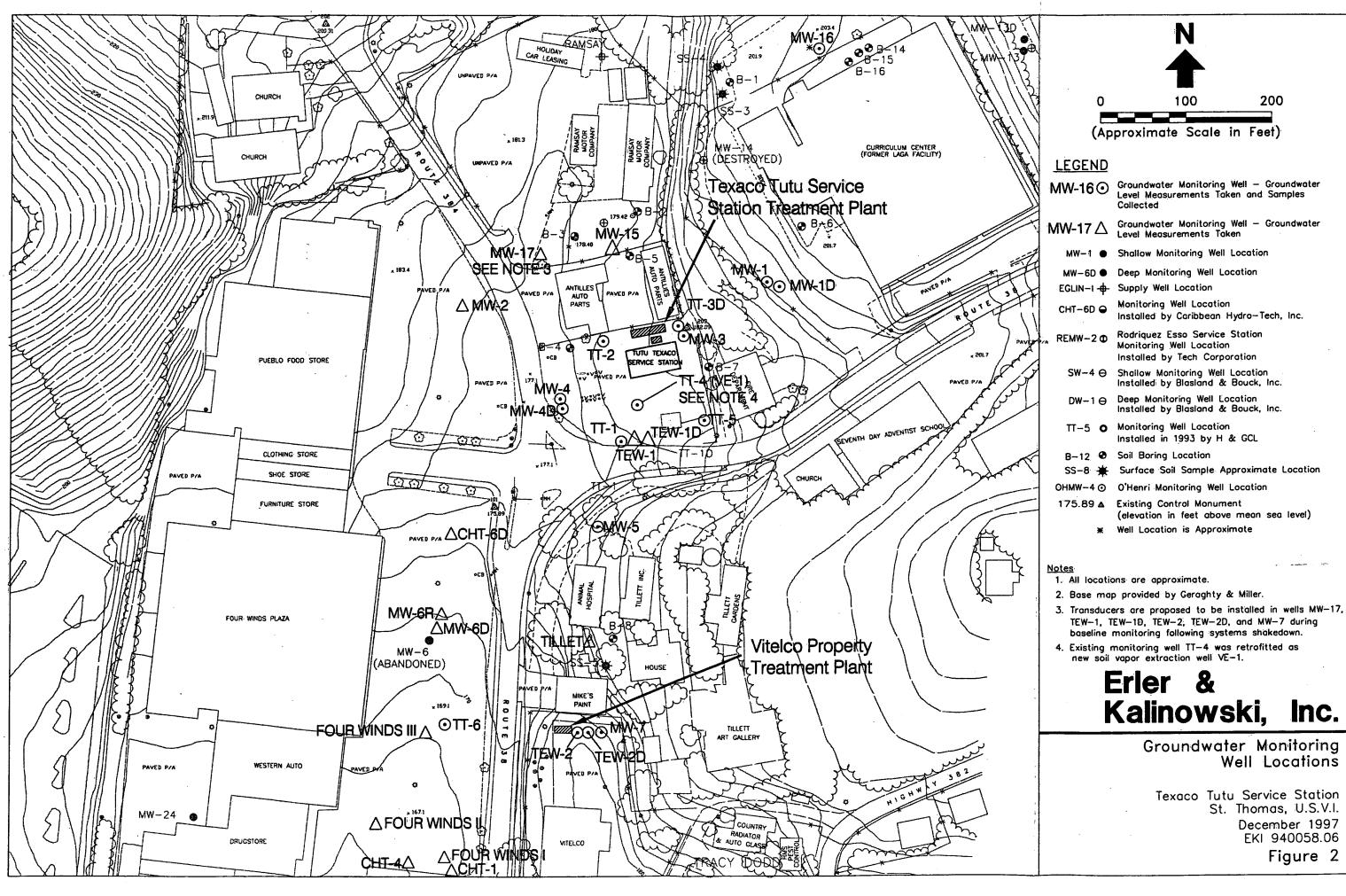

Texaco Tutu Service Station

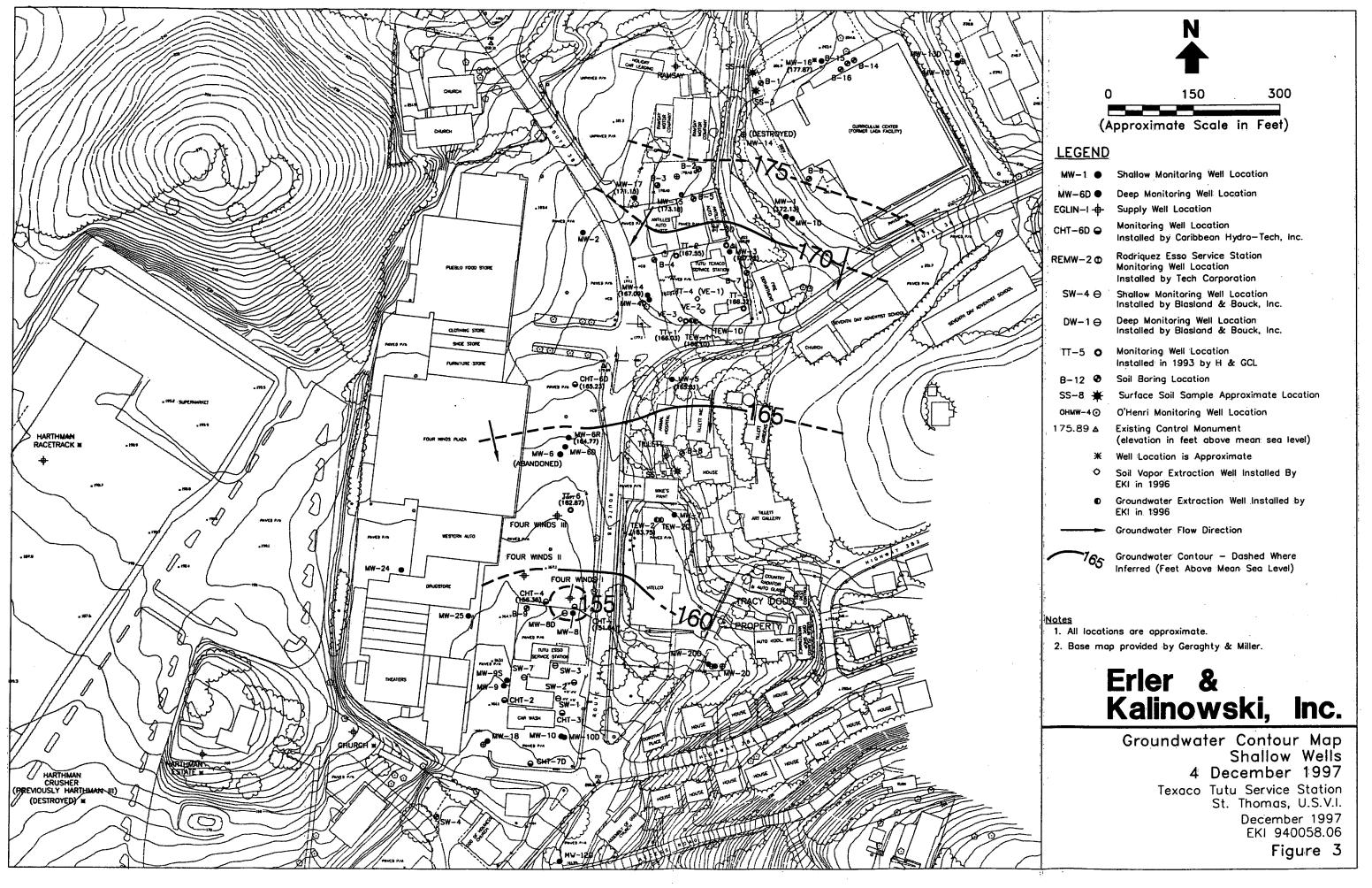
St. Thomas, U.S. Virgin Islands

Well ID	Top of Casing Elevation	Depth to Water (1)	Groundwater Elevation
	(feet MSL)	(feet)	(feet MSL)
Texaco Service Station			
TT-1	179.03	13.00	166.03
TEW-1	176.99	10.89	166.10
TEW-1D	176.99	10.87	166.12
TT-2	179.69	12.14	167.55
TT-3D	181.75	13.68	168.07
TT-4 (VE-1)	179.66	11.25	168.41
TT-5	182.34	16.02	166.32
MW-3	181.84	14.12	167.72
MW-4	175.66	8.57	167.09
MW-4D	176.02	9.67	166.35
Viltelco Property			
TEW-2	178.21	14.46	163.75
TEW-2D	178.23	14.67	163.56
MW-7 (2)	180.13	-	-
North of Texaco			
Service Station		· ·	
MW-1	195.08	22.95	172.13
MW-1D	195.14	38.14	157.00
MW-2 (3)	178.15	-	-
MW-15	178.95	5.77	173.18
MW-16	202.33	24.46	177.87
MW-17	177.18	6.03	171.15
South of Texaco			
Service Station			
CHT-1	167.7	16.06	151.64
CHT-4	166.95	10.59	156.36
CHT-6D	174.20	8.97	165.23
MW-5	187.09	21.28	165.81
MW-6R	171.17	6.40	164.77
MW-6D	171.01	6.19	164.82
TT-6	169.18	6.31	162.87
Tillet (4)	186	22.71	-
Four Winds I (4 & 5)	166	27.62	· -
Four Winds II (4)	165	9.87	-
Four Winds III (6)	NA	4.11	-

TABLE 1 - NOTES:

- (1) Measurements were taken by Fluor Daniel GTI on 4 December 1997.
- (2) Not measured; apparently covered by shipping container.
- (3) Not measured; covered by automobile.
- (4) Top of casing elevation is approximate.
- (5) A pump in the Four Winds I well was operating on 4 December 1997.
- (6) NA = Not Available
- (7) Feet MSL feet relative to mean sea level




Erler & Kalinowski, Inc

Location of Tutu Area, St. Thomas

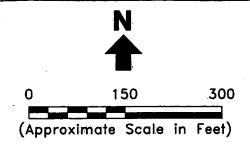
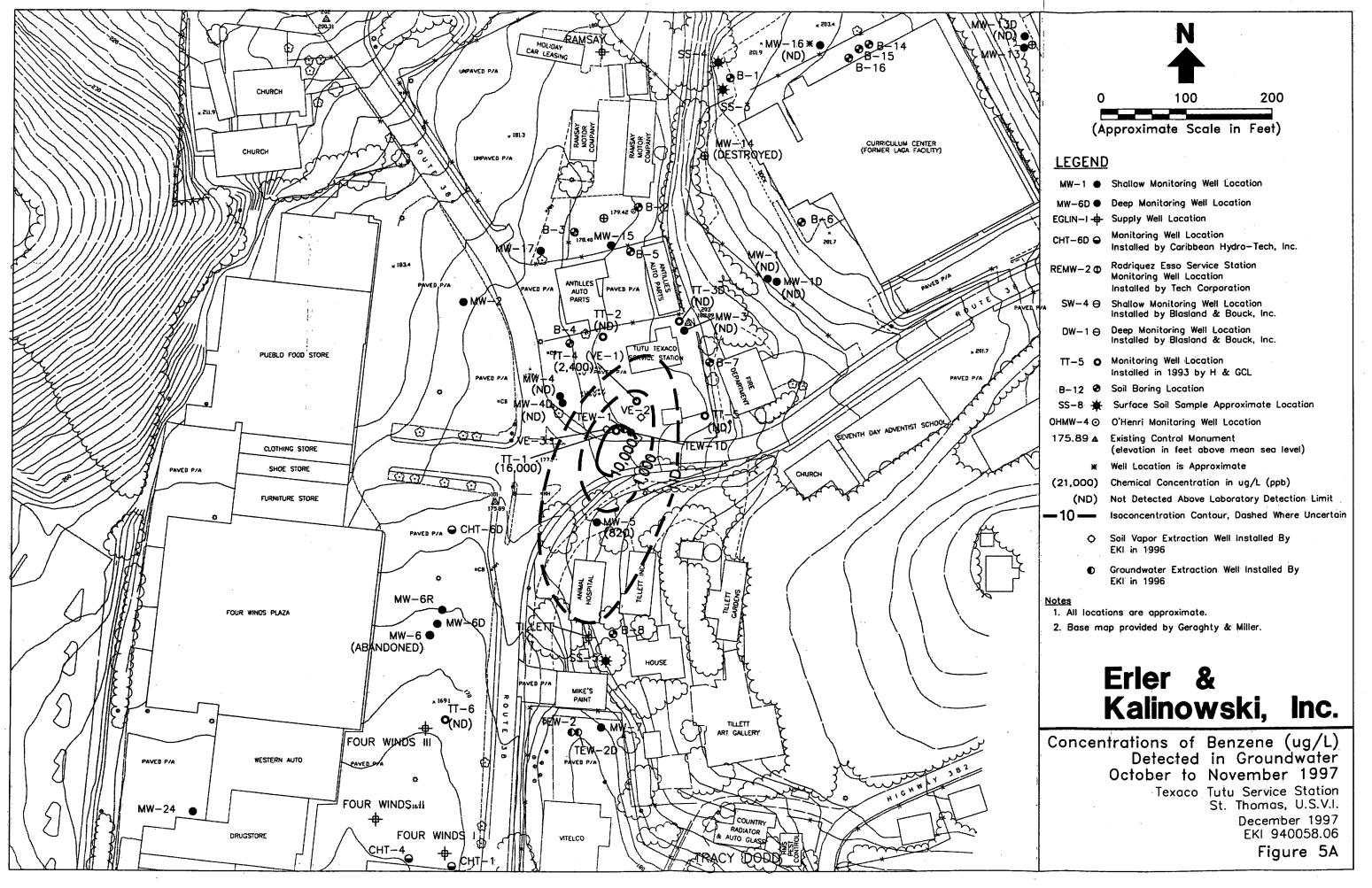
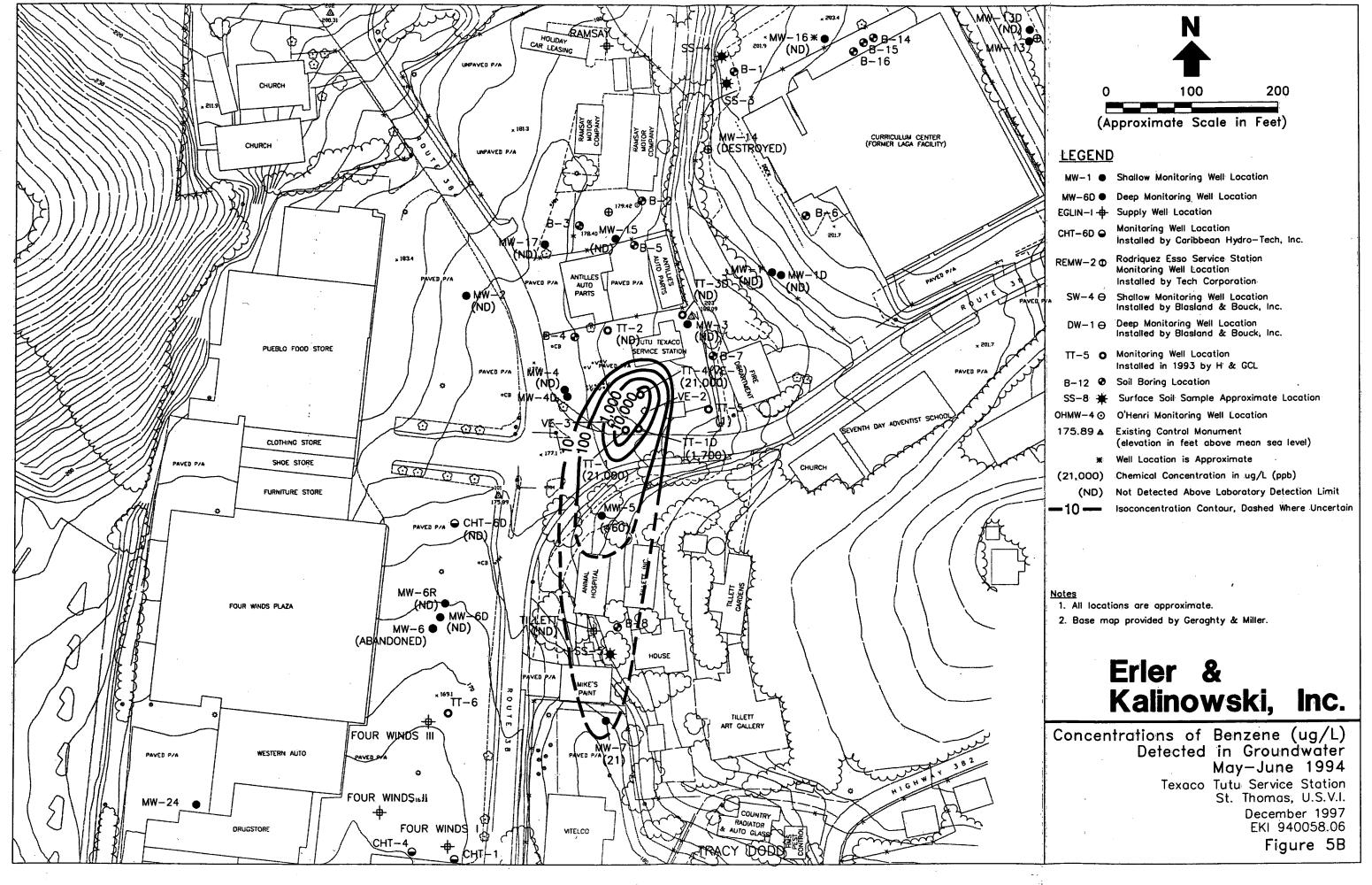
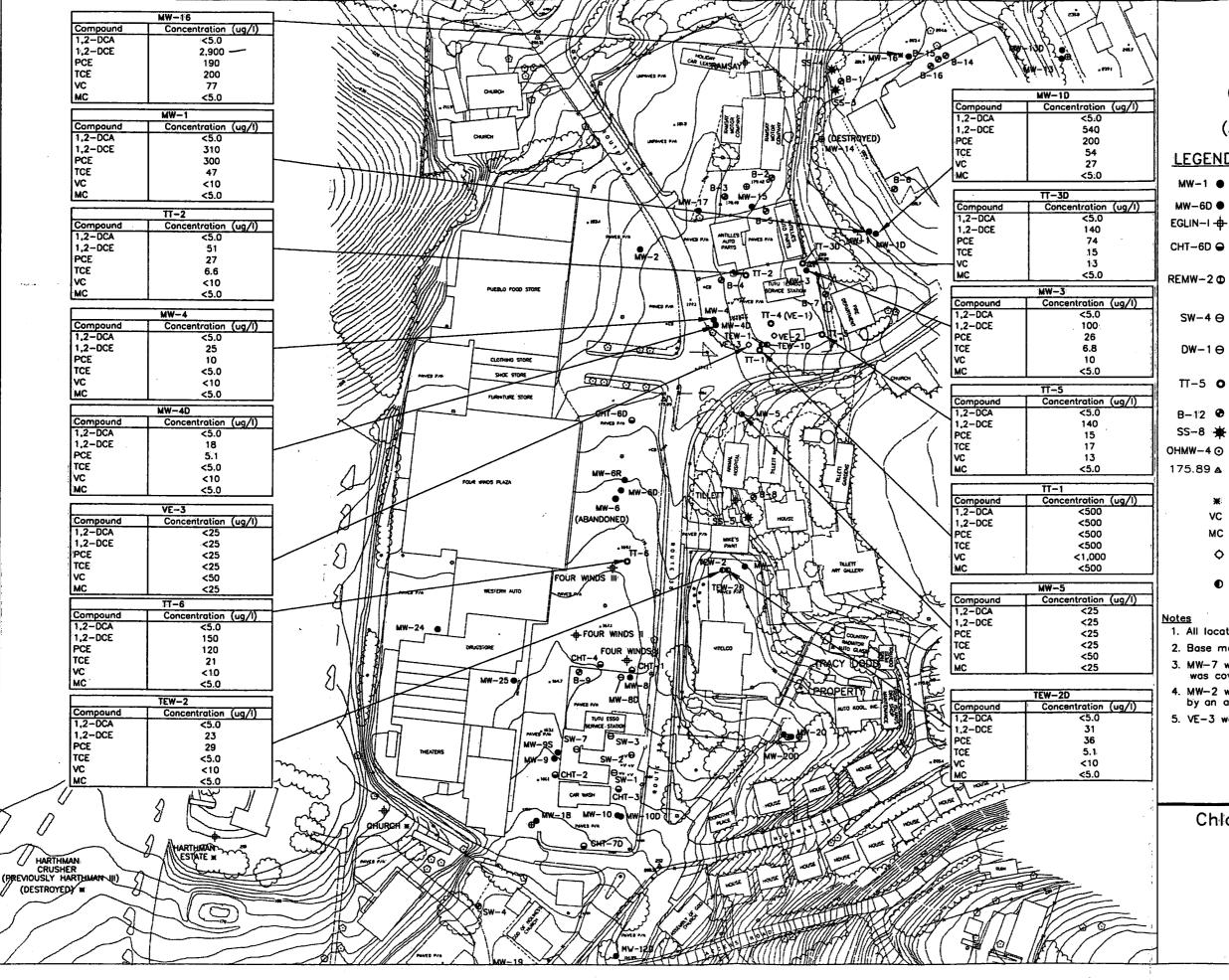

Texaco Tutu Service Station St. Thomas, U.S.V.I. December 1997 EKI 940058.06

Figure 1

LEGEND


- MW-1 Shallow Monitoring Well Location
- Deep Monitoring Well Location
- Supply Well Location EGLIN-I +
 - Monitoring Well Location
- Installed by Caribbean Hydro-Tech, Inc.
- Rodriquez Esso Service Station REMW-2 0 Monitoring Well Location
 - Installed by Tech Corporation
- Shallow Monitoring Well Location SW-4 ⊖
- Installed by Blasland & Bouck, Inc.
- Deep Monitoring Well Location Installed by Blasland & Bouck, Inc.
- Monitoring Well Location Installed in 1993 by H & GCL
- B-12 🏵 Soil Boring Location
- SS-8 * Surface Soil Sample Approximate Location
- OHMW-4 ⊙ O'Henri Monitoring Well Location
- **Existing Control Monument** (elevation in feet above mean sea level)
 - Well Location is Approximate
 - Soil Vapor Extraction Well Installed By EKI in 1996
 - Groundwater Extraction Well Installed By EKI in 1996
- 1. All locations are approximate.
- 2. Base map provided by Geraghty & Miller.
- MW-7 was not sampled because the well was covered by a shipping container.
- 4. MW-2 was not sampled because the well was covered by an automobile.
- 5. VE-3 was inadvertently sampled instead of TT-4 (VE-1).


Erler & Kalinowski, Inc.


BTEX Concentrations in Groundwater October to November 1997

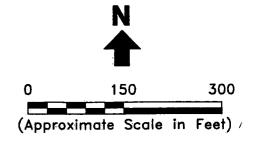

Texaco Tutu Service Station St. Thomas, U.S.V.I. December 1997 EKI 940058.06

Figure 4

LEGEND

- Shallow Monitoring Well Location
- Deep Monitoring Well Location
- Supply Well Location EGLIN-I-
 - Monitoring Well Location
- Installed by Caribbean Hydro-Tech, Inc.
- Rodriquez Esso Service Station REMW-2 0
 - Monitoring Well Location Installed by Tech Corporation
- SW-4 0 Shallow Monitoring Well Location
- Installed by Blasland & Bouck, Inc.
- Deep Monitoring Well Location Installed by Blasland & Bouck, Inc.
- Monitoring Well Location TT-5 O Installed in 1993 by H & GCL
- B-12 Soil Boring Location
- SS-8 🐞 Surface Soil Sample Approximate Location
- O'Henri Monitoring Well Location
- **Existing Control Monument** (elevation in feet above mean sea level)
 - Well Location is Approximate
 - Vinyl Chloride
 - Methylene Chloride
 - Soil Vapor Extraction Well Installed By EKI in 1996
 - Groundwater Extraction Well Installed By
- 1. All locations are approximate.
- 2. Base map provided by Geraghty & Miller.
- 3. MW-7 was not sampled because the well was covered by a shipping container.
- 4. MW-2 was not sampled because the well was covered by an automobile.
- 5. VE-3 was inadvertently sampled instead of TT-4 (VE-1).

Erler & Kalinowski, Inc.

Chlorinated VOC Concentrations in Groundwater October to November 1997

Texaco Tutu Service Station St. Thomas, U.S.V.I. December 1997 EKI 940058.06 Figure 6

Appendix A - Start-Up Monitoring Program Tables 1 & 4

Baseline Groundwater Monitoring

Tutu Texaco Service Station U.S. Virgin Islands (EKI 940058.06)

Weil ID	Baseline Mo			
	Water Level Measurement (1 &3)	Groundwater Sampling (1)	Transducer Installation (4)	LNAPL Monitoring
Texaco Service Station				
TT-1	X	X		
TEW-1	X	••••••••••••••••••••••••••••••••••••••	X	X
TEW-1D	X		X	X X
TT-2	X X X X X	X		X.
TT-3D	X	X]	
TT-4 (VE-1) (5)	X	X	1.	
TT-5	X	X		
MW-3	X	X	1	
MW-4	X	X		
MW-4D	X	X		
Vilteico Property				,
TEW-2	X	X	X	
TEW-2D	X X	X	X X X	
MW-7	×	X	X	
North of Texaco Service Station				
MW-1	×	X		
MW-1D	X	X		
MW-2	x			
MW-15	X X X			
MW-16	X	X		
MW-17	X		X	
South of Texaco	٠.			
Service Station				
CHT-1	X			:
CHT-4	X			
CHT-6D	X			
MW-5	X	X		
MW-6R	X	•		
MW-6D	· X		,	
TT-6	X X X X	X	ł	
Tillet	Y X			
Four Winds I	i S	÷		ľ
Four Winds II	_ <u>.</u>			~ -
Four Winds III	X	`# .		

Nates:

- Groundwater levels and samples will be taken prior to shakedown of the Vitelco and Tutu Texaco Service Service Station groundwater extraction and treatment systems. See text for description of "shakedown" period.
- 2. Groundwater samples will be analyzed for volatile organic compounds using EPA Test Method 8240.
- Groundwater levels only will be taken following shakedown of the Vitelco and Tutu Texaco Service Station groundwater extraction and treatment systems.
- 4. Transducers will be used during baseline monitoring following shakedown of the Vitelco and Tutu Texaco Service Station groundwater extraction and treatment systems.
- 5. Existing monitoring well TT-4 will be retrofitted to be a new soil vapor extraction well and will be renamed VE-1.
- 6. Monitoring plan is subject to modification.

Table 4

Groundwater Monitoring During Start-Up of Texaco Station and Vilteico Property Groundwater Extraction and Treatment Systems Operation

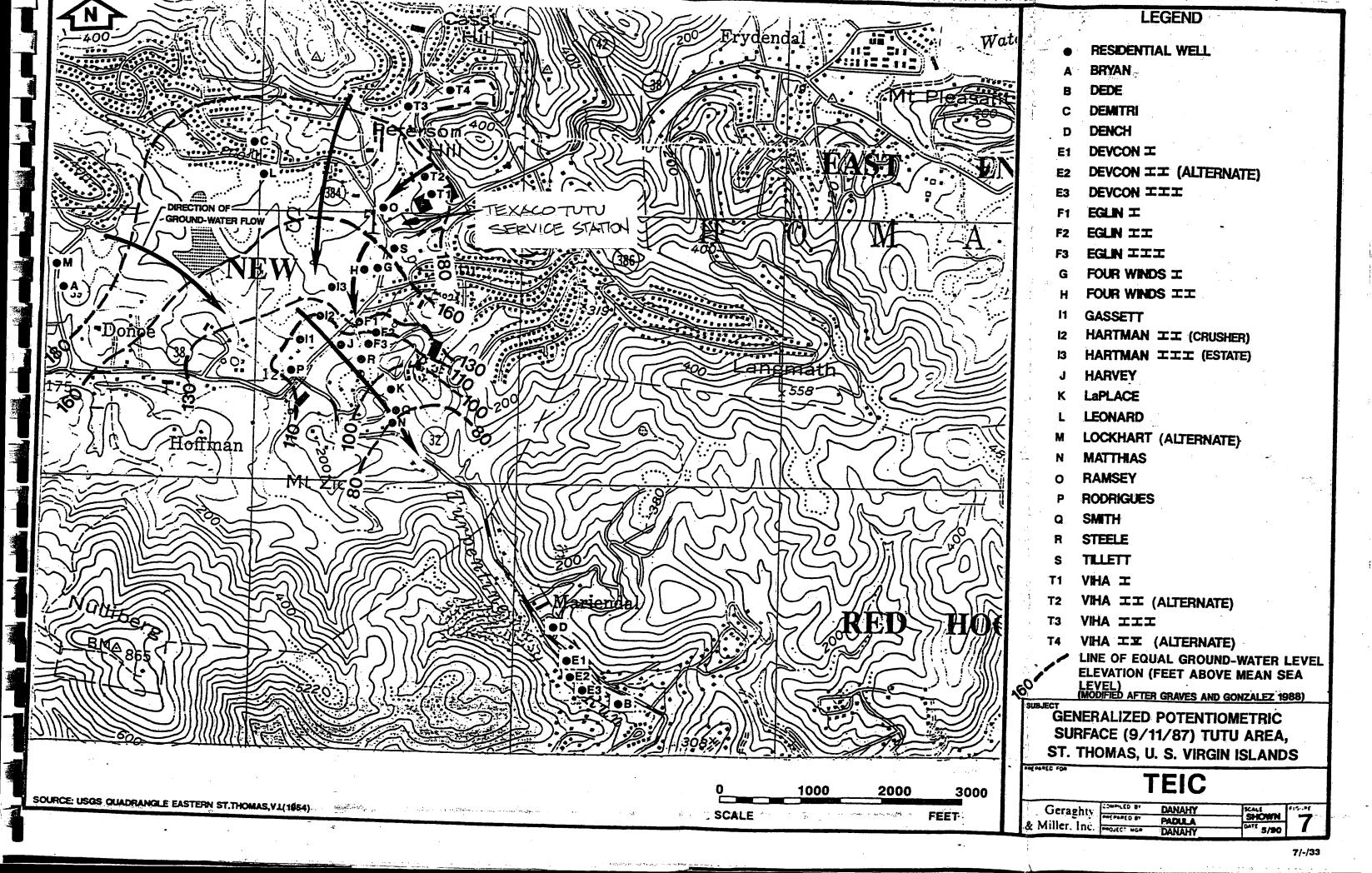
Tutu Texaco Service Station U.S. Virgin Islands (EKI 940058.06)

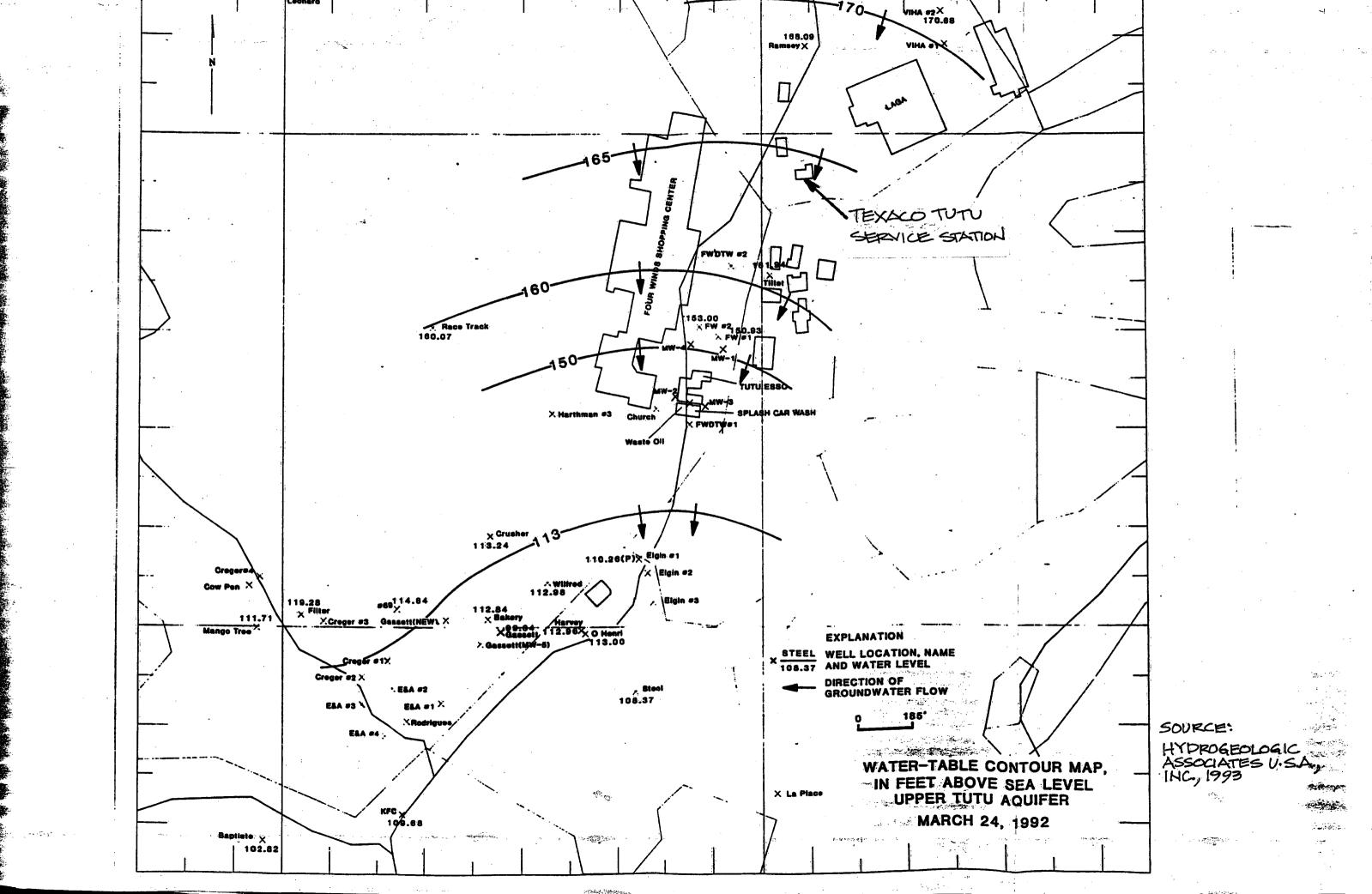
Well ID		Water Level Monitoring Schedule				
		0-2 Weeks		2 Weeks - 6 Months	Sampling 0-6 Months	0-6 Months
	Days 1 and 2 (1) (event/day)	Days 3 through 7 (1) (event/day)	Second Week (2) (event/week)	(3)	(4)	(4)
Texaco Service Station				i	·	
TT-1	4x	2x	3x ·	X	×	
TEW-1	Transducer	Transducer	Transducer	×		X
TEW-1D	Transducer	Transducer	Transducer	X		X X
TT-2	4×	2x	3x	X	x	
TT-3D	4×	2x	3x	. x	X X X X	,
TT-4 (VE-1) (5)	4×	2x	Эx	X	X	
TT-6	4×	2x	3x	X	X	
MW-3	4×	2x	.Зж	X	X.	•
MW-4	4×	2x	3x	X	X	
MW-4D	4x	2x	3x	X X X	Х	
Viitelco Property		-	,			
TEW-2	Transducer	Transducer	Transducer	x	×	
TEW-2D	Transducer	Transducer	Transducer	ŵ	Ŷ	
MW-7	Transducer	Transducer	Transducer	X X	X X X	
North of Texaco Service Station						
MW-1	2x	1x	3x	X	v.	
MW-1D	2x	1x	3x	x	X	• .
MW-2	2x	1x	3x	x	^	
MW-15	2x	1x	3x	x		•
MW-16	. 2x	1x	3x	X	,	,
MW-17	Transducer	Transducer	Transducer	[· · · · · · · · · · · · · · · · · · ·	×	• •

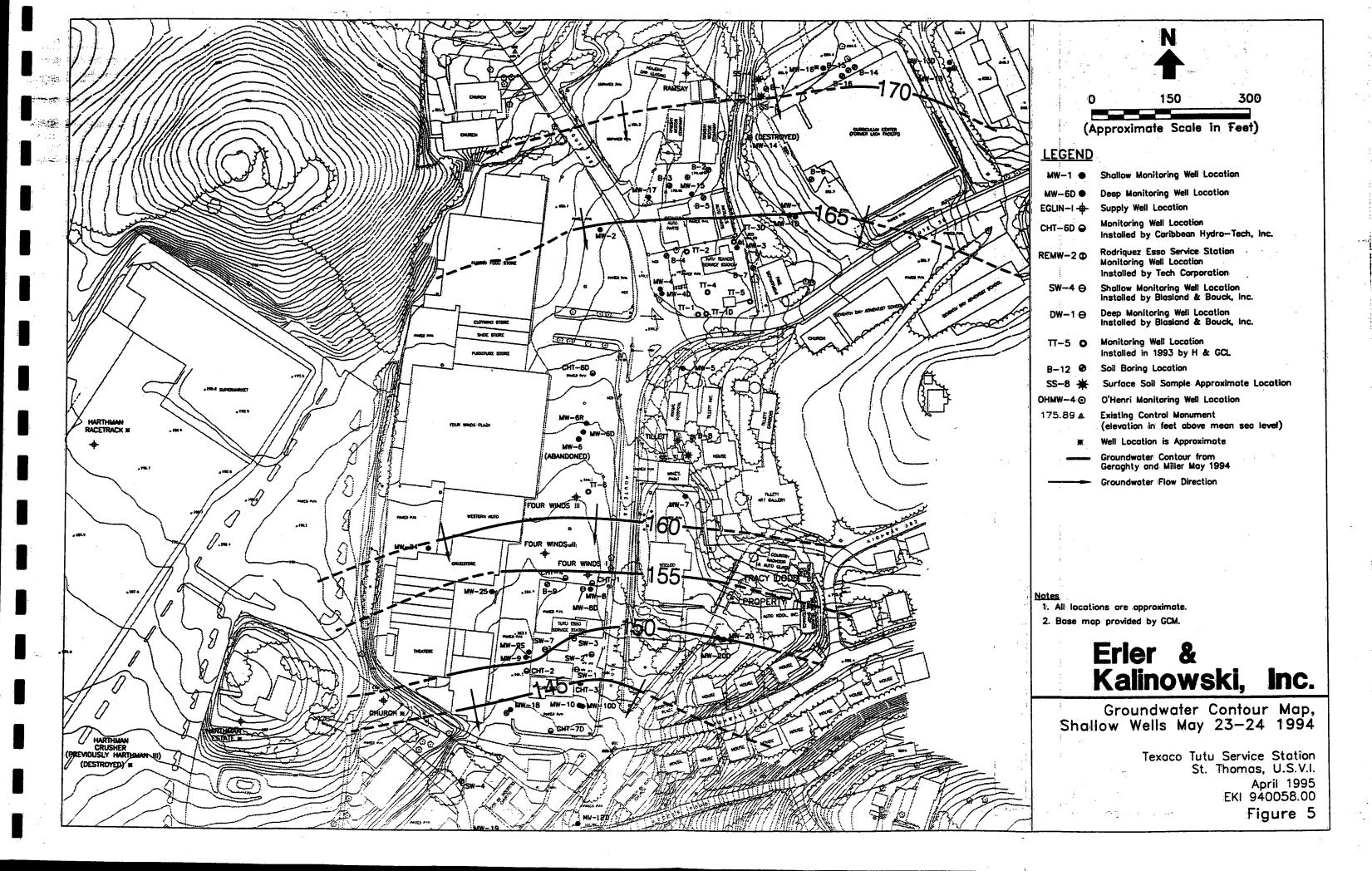
Table 4

Groundwater Monitoring During Start-Up of Texaco Station and Viltelco Property Groundwater Extraction and Treatment Systems Operation

Tutu Texaco Service Station U.S. Virgin Islands (EKI 940058.06)


Well ID	•	Groundwater Sampling			
		0-2 Weeks	2 Weeks - 6 Months	0-6 Months	
	Days 1 and 2 (1) (event/day)	Days 3 through 7 (1) (event/day)	Second Week (2) (event/week)	(3)	(4)
South of Texaco Service Station					
CHT-1 CHT-4 CHT-6D MW-5 MW-6R	2x 2x 4x 4x 4x	1x 1x 2x 2x 2x 2x	3x 3x 3x 3x 3x 3x	X X X X	. x
MW-6D TT-8 Tillet Four Winds I Four Winds II Four Winds III	4x 2x 4x 2x 2x 2x	2x 1x 2x 1x 1x 1x	3x 3x 3x 3x 3x 3x	X X X X X	X


Notes:


- 1. Level measurement activities will be equally spaced throughout a standard work day.
- 2. Level measurement activities will be equally spaced throughout a standard work week.
- 3. Level measurement activities will be performed monthly during the period of 2 weeks to 6 months.
- 4. Groundwater sampling will be performed once during the first month and quarterly thereafter. Samples will be analyzed using EPA Test Method 8240.
- 5. Existing monitoring well TT-4 will be retrofitted to be a new soil vapor extraction well and will be renamed VE-1.
- 6. Monitoring plan is subject to modification.

Appendix B - Historical Groundwater Elevation Data

Figure 4. Observed Water Levels - January 1966 SOURCE: (Data from Jorden and Cosner, 1973) GARTNER LEE INTERNATIONAL, INC., 1993 200-WATER LEVEL CONTOUR IN FEET 3000 ABOVE MEAN BEA Northing (m) 2000 100 1000 1000 2000 Easting (m) 3000 4000

Appendix C - Laboratory Analytical Data & Field Notes

MASTER COPY

RECEIVED

NOV 0 7 1997

ETLER & KALINOWSKI, INC.

ENVIRONMENTAL LABORATORIES. INC.

Southeast Region 10500 University Center Drive, Suite 160 Tampa, FL 33612 (813) 979-9092 800-933-GTEL (4835) FAX: 813-979-6914

RECEIVED OCT 2 3 1997

October 21, 1997

Dale Mcfarland FLUOR DANIEL GTI 5553 Ravenswood Rd Fort Lauderdale, FL 33312

RE: NEI/GTEL Client ID:

100212

Login Number:

F7100092

Project ID (number):

100212

Project ID (name):

TEXACO TUTU

Dear Dale Mcfarland:

Enclosed please find the analytical results for the samples received by NEI/GTEL Environmental Laboratories, Inc. on 10/09/97 under Chain-of-Custody Number(s) 42096-42095.

A formal Quality Assurance/Quality Control (QA/QC) program is maintained by NEI/GTEL, which is designed to meet or exceed the EPA requirements. Analytical work for this project met QA/QC criteria unless otherwise stated in the footnotes. This Analytical report shall not be reproduced except in full.

GTEL is certified (approved) by the State of Florida under Certification Number HRS E84196, by the State of South Carolina under Certificate Number 96025, and by the State of Tennessee for UST list.

If you have any questions regarding this analysis, or if we can be of further assistance, please call our Customer Service Representative.

Sincerely.

NEI/GTEL Environmental Laboratories, Inc.

Peter Barto ⊠eneral Manager ANALYTICAL RESULTS

NEI/GTEL Client ID: 100212

Login Number: F7100092
Project ID (number): 100212
Project ID (100212

Project ID (name): TEXACO TUTU

Volatile Organics Method: EPA 8240 Matrix: NotPres AQ

		The second secon
	064860046000-#TT0000455000T6000T00T000T007T007T09*******************	100092-02 F7100092-03 F7100092-04
1 maj of / 20 t at		
		MALE STATE OF THE
	Citema III III-6	MASS NAVES TO SEE
	rate Sampled 10/17/97	10/07/97 10/07/97 10/07/97
	The state of the s	· · · · · · · · · · · · · · · · · · ·
	Links American III - Pitt	
	Date Analyzed IO/14/97	10/17/97 10/14/97 10/17/97
		er sam er sam till sign
	The Table 10 Told 10 T	

	Reporting		_			•
Analyte	Limit	Units		oncentration:	Andrew Control of the State of	2 Print
Chloromethane	10.	ug/L	< 10.	< 50	< 10.	< 10. € 10.
Bromomethane	10.	ug/L	< 10.	< 50.	< 10.	< 10.
inyl chloride	10.	ug/L	< IO.	< 50.	10.	13.
hloroethane	10.	ug/L	< 10.	< 50.	< 10.	< 10.
Methylene chloride	5.0	ug/L.	< 5.0	< 25	< 5.0	< 5.0
cetone	20.	ug/L	< 20.	- 130	< .20.	< 20.
arbon disulfide	5.0	ug/L	< 5.0	< 25.	< 5.0	< 5.0
1.1-Dichloroethene	5.0	ug/L	< 5.0	< 25.	< 5.0	< 5.0
.1-Dichloroethane	5.0	ug/L	< 5.0	< 25.	< 5.0	< 5.0
.2-Dichloroethene (total)	5.0	ug/L	150	< 25.	100	140
hloroform	5.0	ug/L	< ₹.0	< 25.	< 5.0	< 5.0
L.2-Dichloroethane	5.0	ug/L	< 5.0	< 25.	< 5.0	< 5.0
-Butanone	20.	ug/L	< 20.	< 100	< 20.	< 20
.1.1-Trichloroethane	5.0	ug/L	< 5.0	< 25.	- < 5.0	< 5.0
Tarbon tetrachloride	5.0	ug/L	< 5.0	< 25.	< 5.0	< 5.0
inyl acetate	20.	ug/L	< 20.	< 100	< 20.	< 20.
romodichloromethane	5.0	ug/L	< 5.0	< 25.	< 5.0	< 5:0
.2-Dichloropropane	5.0	ug/L	< 5.0	< 25.	< 5.0	< 5.0
pis-1.3-Dichloroprop ene	5.0	ug/L	< 5.0.	< 25.	< 5.0	< 5.0
richloroethene	5.0	ug/L	21.	< 25.	6.8	15.
ibromochloromethane	5.0	ug/L	< 5:0	< 25.	< 5.0	< 5.0
.1.2-Trichloroethane	5.0	ug/L	< 5.0	< 25.	< 5.0	< 5.0
enzene	5.0	ug/L	< 5.0	820	< 5.0	< 5.0
-Chloroethyl vinyl ether	1Ò.	ug/L	< 10.	< 50.	< 10.	< 10.
rans-1.3-Dichloropropene	5.0	ug/L	< 5.0	< 25.	< 5.0	< 5.0
romoform	5.0	ug/L	< 5.0	< 25.	< 5.0	< 5.0
-Methyl-2-pentanone	20	ug/L	< 20.	< 100	< 20.	< 20.
-Hexanone	. 20.	ug/L	< 20.	< 100	< 20.	- < 20.
etrachloroethene	5.0	ug/L ug/L	120	< 25.	26.	74.
.1.2.2-Tetrachloroethane	5.0	ug/L	< 5.0	< 25.	< 5.0	< 5.0
cluene	5.0 5.0	ug/L	< 5.0	< 25.	< 5.0	< 5.0
blorobenzene	5.0	ug/L	< 5.0	< 25.	< 5.0	< 5.0
thy Thenzene	5.0 5.0	ug/L	< 5.0	70 0	< 5.0°	< 5.0:
tyrene	5.0	nā∖Γ nāv∟	< 5.0	70 a < 25.	< 5.0	< 5.0
ylenes (total)	5.0 5.0	*********	< 5.0	< 25.	< 5.0	< 5.0
.3-Dichlorobenzene	******************	ug/L	er was a supplied of the suppl		< 10.	< 10.
	10.	ug/L	< 10.	< 50.		
.4-Dichlorobenzene	10.	ug/L	< 10.	< 50.	< 10.	< 10.
.2-Dichlorobenzene	10.	ug/L	< 10.	< 50.	< 10.	< 10.

EI/GTEL Tampa. FL

F7100092:1

Login Number:

F7100092 Project ID (number): 100212

Project ID (name): TEXACO TUTU

Volatile Organics

Method: EPA 8240

Matrix: NotPres AQ

MET/GIEL Same	e Number 57199992-91	F7188892-02	F7100092-03 F7100092-04
	Transfer ID		MACES TT-300
	A REAL LE PLACE		
Dati	e Sampled 10/07/97	10303393	10/07/97 10/07/97
Bate	Analyzed 10714/97	10/17/97	10/14/97 10/17/97
DATE AND	- E I m	E 00	EAR EAR
	Historian Carlo		

Reporting

Limit Units Concentration:

Analyte otes: (continued)

flution Factor:

Dilution factor indicates the adjustments made for sample dilution.

PA 8240:

"Test Methods for Evaluating Solid Waste. Physical/Chemical Methods". SW-346. Third Edition including Update 1. Analyte list modified to include additional compounds.

EI/GTEL Tampa, FL 7100092:2

ANALYTICAL RESULTS

NEI/GTEL Client ID: 100212 Login Number: F7100092

Project ID (number): 100212 Project ID (name): TEXACO TUTU

Volatile Organics Method: EPA 8240 Matrix: NotPres AQ

	F7100092-05 F7100092-06 F7100092-07	ETT-RESERVE AS
MELLIGIEL SAMBLE MUNDER	EXTRADAS-00 EXTRADAS-00 EXTRADAS-01	E / TAM25-AG
Client ID		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Pate Same et	10/07/97 10/07/97 10/07/97	19/9//9/
Date Analyzed	10/17/97 10/17/97 10/17/97	T-92/172/97
unii. remijaru	10.000 10.000	
DESCRIPTION Exercise	1 00 100 100	
BRIDLIAN COLUM	E.O. 1901 Live	

	Reporting	1123	,			
Analyte	Limit	Units	< 10.	Concentration:	< 10	< 10.
hloromethane	10.	ug/t	< 10.	< 1000	< 10.	< 10.
Bromomethane	10. 10.	ug/L	13.	< 1000 < 1000	< 10.	< 10.
finyl chloride	000000000000000000000000000000000000000	ug/L	< 10.	< 1000	< 10.	< 10.
hloroethane	10. 5.0	ug/L ug/L	< 5.0°	< 500	< 5.0°	< 5.0
Methylene chloride	20.	ug/L ug/L	34.	< 2000	< 20.	< 20.
Acetone Arbon disulfide	20. 5.0	ug/L ug/L	34. < 5.0	< 500	< 5.0	< 5.0
.1-Dichloroethene	5.0	ug/L	< 5.0	< 500	< 5.0	< 5.0
1-Dichloroethane	5.0 5.0	ug/L ug/L	< 5.0	< 500	< 5.0	< 5.0
2-Dichloroethene (total)	5.0	ug/L	140	< 500	51.	25.
inloroform	5.0	ug/L	< 5 .J	< 500	< 5.0	< 5.0
2-Dichloroethane	5.0	ug/L	< 5.0	< 500	< 5.0	< 5.0
2-91ch10roechane -Butanone	20.	ug/E	~ 20.	< 2000	< 20.	< 20.
.1.1-Trichloroethane	5.0	ug/L	< 5.0	< 500	< 5.0	< 5.0
arbon tetrachloride	5.0	ug/L	< 5.0	< 500	< 5.0	< 5.0
/inyl acetate	20.	ug/L	< 20.	< 2000	< 20.	< 20.
Fromodich Toromethane	5.0	ug/L	< 5.0	< 500	< 5.0	< 5.0
.2-Dichloropropane	5.0	ug/L	< 5.0	< 500	< 5.0	< 5.0
ris-1.3-Dichloropropene	5.0	ug/L	< 5.0	< 500	< 5.0	< 5.0
[richloroethene	5.0	ug/L	17.	< 500	6.6	< 5.0
Dibromochioromethane	5.0	ug/L	< 5.0	< 500	< 5.0	< 5.0
.1.2-Trichloroethane	5.0	ug/L	< 5.0	< 500	< 5.0	< 5.0
Benzene	5.0	ug/L	< 5.0	16000	< 5.0.	< 5.0
2-Chloroethyl vinyl ether	10.	ug/L	< 10.	< 1000	< 10.	< 10.
rans-1.3-Dichloropropene	5.0	ug/L	< 5.0	< 500	< 5.0	< 5.0
Bromoform	5.0	ug/L	< 5.0	< 500	< 5.0	< 5.0
i-Methyl-2-pentanone	20.	ug/L	< 20:	< 2000	< 20.	< 20.
2-Hexanone	- 20.	ug/L	< 20.	< 2000	< 20.	< 20.
etrachloroethene	- 5.0	ug/L	15_	< 500	27.	10.
1.1.2.2-Tetrachloroethane	5.0	ug/L	< 5.0	< 500	< 5.0	< 5.0
oluene	5.0	ug/L	< 5.0	17000	< 5.0	< 5.0
hlorobenzene	5.0	ug/L	< 5.0	< 500	< 5.0	< 5.0
thyThenzene	5.0	ug/L	< 5.0	3300	< 5.0	< 5.0
ityrene	5.0	ug/L	< 5.0	< 500	< 5.0	< 5.0
ylenes (total)	5.0	ug/L	< 5.0	17000	< 5.0	< 5.0
3-Dichlorobenzene	10.	ug/L	< 10.	< 1000	< 10.	< 10.
_4-Dichlorobenzene	10	ug/L.	< 10.	< 1000	€ 10.	< 10.
2-Dichlorobenzene	10	ug/L	< 10.	< 1000	< 10.	< 10.

NEI/GTEL Tampa. FL F7100092:3

Login Number:

F7100092

Project ID (number): 100212 Project ID (name):

TEXACO TUTU

Volatile Organics

Method: EPA 8240

Matrix: NotPres AQ

	1 4 4 7	
		F7100092-07 F7100092-08
NET/GTEL Sample Number FATIRE		
		Markett.

Date Sampled 102		
		TENER 1 TO 100 TO 1
Tata Ana yard	17/07 10/17/07	
	to come TPLA	TO STATE OF THE ST
The Liver and Designation		

ANALYTICAL RESULTS

Reporting

Limit

Units

Concentration:

Analyte Notes: (continued)

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

"Test Methods for Evaluating Solid Waste. Physical/Chemical Methods". SM-846. Third Edition including Update 1. Analyte list modified to include additional compounds.

NEI/GTEL Client ID: 100212 -

Login Number: F7100092
Project ID (number): 100212
Project ID (name): TEXACO TUTU

ANALYTICAL RESULTS

Volatile Organics Method: EPA 8240

Matrix: NotPres AQ

MEI/GIEL Sample Number F7100092-09 F7100092-10 F7100092-11 F7100092-1	
	7 888888
	########
	#####
Client ID MA-40 TRIP BLANK DUPLICATE TT-420E-	#
Ratio Samplied 187(82792 18782792 18787792 18787792	
Date Sampled 10/07/97 10/07/97 10/07/97 10/07/97	M
Bate Analyzed 16/17/97 10/15/97 10/1/97 10/1/97	2 000000

DETAILED EXCHANGE THE TABLE THE TABLE TO SEE	800000 ·

	Reporting					·
Analyte	Limit	Units		Concentration:	<u> </u>	
Chloromethane	10.	ug/L	< 10.	< 10.	< 10.	< 50.
Bromomethane	10.	ug/L	< 10.	< 10.	< 10	< 50.
Vinyl chloride	10.	nd/F	< 10.	< 10.	< 10.	< 50.
Chloroethane	10.	ug/L	< 10.	< 10.	< 10.	< 50.
Methylene chloride	5.0	ug/L	< 5.0	< 5.0	< 5.0	< 25.
Acetone	20.	ug/L	< 20.	< 20.	< 20.	< 100
Carbon disulfide	5.0	ug/E	< 5.0	< 5.0	< 5.0	< 25.
1.1-Dichloroethene	5.0	ug/L	< 5.0	< 5.0	< 5.0	< 25.
E.L-Dichloroethane	5.0	ug/L	< 5.0	< 5.0	< 5.0	< 25.
1.2-Dichloroethene (total)	5.0	ug/L	18.	< 5.0	27.	< 25.
Chloroform	5.0	ug/L	< ₹. 3	< 5.0	< 5.0	< 25.
1.2-Dichloroethane	5.0	ug/L	< 5.0	< 5.0	< 5.0	< 25.
2-Butanone	20:	ug/L	< 20.	< 20.	< 20.	< 100
1.1.I-Trichloroethane	5.0	ug/L	< 5.0	< 5.0	< 5.0	< 25.
Carbon tetrachloride	5.0	ug/L	< 5.0	< 5.0	< 5.0	< 25.
Vinyl acetate	20.	ug/L	< 20.	< 20.	< 20.	< 100
Bromodichloromethane	5.0	ug/t	< 5.0	< 5.0	< 5.0	< 25.
1.2-Dichloropropane	5.0	ug/L	< 5.0	< 5.0	< 5.0	< 25.
cis-1.3-Dichloropropene	5.0	ug/L	< 5.0	< 5.0	< 5.0	< 25,
Trichloroethene	5.0	ug/L	< 5.0	< 5.0	< 5.0	< 25.
Dibromechloromethane	5.0	ug/L	< 5.0	< 5.0	< 5.0	< 25.
1.1.2-Trichloroethane	5.0	ug/L	< 5.0	< 5.0	< 5.0	< 25.
Benzene	5.0	ug/L	< 5.0	< 5.0	< 5.0	2400
2-Chloroethyl vinyl ether	10.	ug/L	< 10.	< 10.	< 10.	< 50.
trans-1.3-Dichloropropene	5.0	ug/L	< 5.0	< 5.0.	< 5.0	< 25.
Bromoform	5.0	ug/L	< 5.0	< 5.0	< 5.0	< 25.
4-Methy1-2-pentanone	20.	ug/L	< 20.	< 20.	< 20.	< 100
2-Hexanone	20.	ug/L	< 20.	< 20.	< 20.	< 100
Tetrachioroethene	- 5.0	ug/L	5.1	< 5.0	11.	< 25.
1.1.2.2-Tetrachloroethane	5.0	ug/L	< 5.0	< 5.0	< 5.0	< 25.
Toluene	5.0	ug/L	< 5.0	< 5.0	< 5.0	51.
Chlorobenzene	5.0	ug/L	< 5.0	< 5.0	< 5.0	< 25.
Ethylbenzene:	5. 0	nd\f	< 5.0	< 5.0	< 5.0	700
Styrene	5.0	ug/L	< 5.0	< 5.0	< 5.0	< 25.
Xylenes (total)	5.0	ug/L	< 5.0	< 5.0	< 5.0	460
1.3-Dichlorobenzene	10.	ug/L	< 10.	< 10.	< 10.	< 50.
1.4-Dichlorobenzene	10	ug/L	< 10.	< 10:	< 10.	< 50.
1.2-Dichlorobenzene	10.	ug/L	< 10.	< 10.	< 10.	< 50
Notes:						

NEI/GTEL Tampa. FL

F7100092:5

Login Number: Project ID (number): 100212

F7100092

Project ID (name): TEXACO TUTU

ANALYTICAL RESULTS

Volatile Organics

Method: EPA 8240

Matrix: NotPres AQ

\ <u></u>				
		F7100092-09 F7100092-10	CTTOROGO TT	CTHANANCE
			E. TRANSC. TT	ENTINAC: IX
	CI test ID	MAL-40 TRIP BLANK	UUPLICAIE	
	Batte Sampled	TO 17 OT 15 / 17 / 17	10/07/97	TO INTIGE
	DOOR SOUNTED			
	Date: Analyzed	***************************************	T0/17/97	TO THE LOT
	LIGHT MIGHT LET		199.1973	THE STATE OF THE S
	DE LECTION PROTOR		Lin	

Reporting

Analyte

Limit Units Concentration:

Notes: (continued)

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

"Test Methods for Evaluating Solid Waste. Physical/Chemical Methods". SW-846. Third Edition including Update 1. Analyte list modified to include additional compounds.

NEI/GTEL Tampa. FL F7100092:6

ANALYTICAL RESULTS

NEI/GTEL Client ID: 100212

Login Number: F7100092 Project ID (number): 100212 Project ID (name): TEXACO TUTU

Volatile Organics Method: EPA 8240 Matrix: NotPres AQ

	atti kaiki 1990-tahin 1994 ka 1996 ka 1		HILL THE PERSON WAS TO THE
Non-Life Life		F7100092-14 F7100092-15	

	and the contract of the contra	44.45	THE THE PART OF STREET
	Citent D Mel	MALIE MALE	
	G1.C30.10 /41.41		
	Date Sampled 10/08/97	10/08/97 10/08/97	
		101 301 21 101 21	
	Date Analyzed 10/20/97	10/20/97 10/20/97	
		IVELIFIE LVICIONE	
	-		
•	127	1 65 1 65	
	filulion falui 1.50	Tine tine	

Ĭ	Reporting					
Analyte	Limit	Units		Concentration:		
Chloromethane	10.	ug/L	< 10.	< 10.	< 10.	< 10.
Bromomethane -	10.	ug/L	< 10.	< 10.	< 10.	< 10.
Winyl chloride	10.	ug/L	< 10.	27.	77	€ 10.
Chloroethane	10.	ug/L	< 10.	< 10.	< 10.	< 10.
Methylene chloride	5.0	ug/L	< 5.0	< 5.0	< 5.0	< 5.0°
Acetone	20.	ug/L	< 20.	< 20.	< 20.	< 20.
Carbon disulfide	5.0	ug/L	< 5.0	< 5.0	< 5.0	< 5.0
1.1-Dichloroethene	5.0	ug/L	< 5.0	< 5.0	< 5.0	< 5.0
1.1-Dichloroethane	5.0	ug/L	< 5.0	< 5.0	< 5.0	<5.0
1,2-Dichloroethene (total)	5.0	ug/L	310	540	2900	< 5.0
Chloraform	5.0	ug/E	< 5.0	< 5.0	< 5.0	< 5.0
■ 1.2-Dichloroethane	5.0	ug/L	< 5.0	< 5.0	< 5.0	< 5.0
2-Butanone	20.	ug/L	< 20:	< 20.	< 20	< 20.
1.1.1-Trichloroethane	5.0	ug/L	< 5.0	< 5.0	< 5.0	< 5,0
- Carbon tetrachionide	5.0	ug/L	< 5.0	< 5.0	< 5.0	< 5.0
Vinyl acetate	20.	ug/L	< 20.	< 20.	< 20.	< 20.
Bromodichloromethane	5.0	ug/L	< 5.0°	< 5.0	< 5.0	< 5.0
1.2-Dichloropropane	5.0	ug/L	< 5.0	< 5.0	< 5.0	< 5.0
cts-1,3-Dichloropropene	5.0	ug/L	< 5.0∞	< 5.0	< 5.0	< 5.0
Trichloroethene	5.0	ug/L	47.	54.	200	< 5.0
Dibromochloromethane	5.0	ug/t	< 5.0	< 5.0	< 5.0	< 5.0
1.1.2-Trichloroethane	5.0	ug/L	< 5.0	< 5.0	< 5.0	< 5.0
Benzene	5.0	ug/L	< 5.0:	< 5.0	< 5.0	< 5.0
2-Chloroethyl vinyl ether	10.	ug/L	< 10.	< 10.	< 10.	< 10.
trans-1.3-Dichloropropene	* 5.0	ug/L	< 5.0	< 5.0	< 5.0	< 5.0
Bromoform	5.0	ug/L	< 5.0	< 5.0	< 5.0	< 5.0
4-Methyl-2-pentanone	20	ug/L	< 20.	< 20.	< 20	- < 20.
2-Hexanone	20.	ug/L	< 20.	< 20.	< 20.	< 20.
Tetrachioroethene	5.0	ug/L	300	200	190	< 5.0
1.1.2.2-Tetrachloroethane	5.0	ug/L	< 5.0	< 5.0	< 5.0	< 5.0
ToTuene	5.0	ug/L	< 5.0	< 5.0	< 5.0	< 5.0
Chlorobenzene	5.0	ug/L	< 5.0	< 5.0	< 5.0	< 5.0
Ethy Thenzene	5.0	ug/L	< 5.0	< 5.0	< 5.0	< 5.0
Styrene	5.0	ug/L	< 5.0	< 5.0	< 5.0	< 5.0
■Xylenes (total)	5.0:	ug/L	< 5.0	< 5.0	< 5.0	< 5.0
1.3-Dichlorobenzene	10.	ug/L	< 10.	< 10.	< 10.	< 10.
L.4-Dichlorobenzene	10.	ug/Ł	< 10.	< 10.	< 10.	< 10.
1.2-Dichlorobenzene	10.	ug/L	< 10.	< 10.	< 10.	< 10.
Notes		<u> </u>				4, * * * * * * * * * * * * * * * * * * *

NEI/GTEL Tampa. FL

F7100092:7

ANALYTICAL RESULTS

Login Number:

F7100092 Project ID (number): 100212

Project ID (name): TEXACO TUTU

Volatile Organics

Method: EPA 8240

Matrix: NotPres AQ

 فعاللل عني علم للما وعيان في المالي الم		
NET/GIEL Sample Number E	TTARAGE ET CTTARAGE TA	F7100092-15
HEREIGH TOMPTE SKURE	LINES E	
filtent III	THE PARTY NAMED IN	MARKE TRIP BLANK
Batte Sampled	737/88/97 (37/33/97	10/08/9/ 10/08/9/

Late Analyzed	1970 P. C. (1970 P. 1970 P. 19	10/20/34 10/13/34
		T AND TO AND
Distriction Factor	Lin Lin	

Reporting

Analyte

Limit Units Concentration:

Notes: (continued)

Mutton Factor:

Dilution factor indicates the adjustments made for sample dilution.

"Test Methods for Evaluating Solid Waste. Physical/Chemical Methods". SM-846. Third Edition including Update 1. Analyte list modified to include additional compounds.

NEI/GTEL Tampa, FL 7100092:8

Login Number: F7100092

Project ID (number): 100212 Project ID (name): TEXACO TUTU ANALYTICAL RESULTS

Volatile Organics Method: EPA 8240

Matrix: NotPres AQ

	<u>, , , , , , , , , , , , , , , , , , , </u>		
NCT /C	TEL Complex Number 57700	807: 1T	
HETAG	ICE TOMPIE HOMENED FATOR	8363 M	
	flight II RES	FICATE	
	Date Sales ed 10	/ma/97	
	Date Aga vzeg 18	78/97	
	Continues with the continues of the cont		

•	Reporting					
Analyte	Limit	Units	Co	ncentration:		
Chloromethane	10,	ug/L	< IO.			
Bromomethane .	10.	ug/L	< 10.		4 -	***
Vinyl chloride	10.	ug/L	89.			
Chloroethane	10.	ug/L	< 10.	••	••	••
Methylene chloride	5.0	ug/L	< 5.0		-	
Acetone	20.	ug/L	< 20.		••	••
Carbon disulfide	5.0	ug/L	< 5.0			
1.1-Dichloroethene	5.0	ug/L	< 5.0			•=
I.I-Dichloroethane	5.0	ug/L	< 5.0	4-4		
1.2-Dichloroethene (total)	5.0	ug/L	2600	a in		
Chloroform	5.0	ug/L	< 5.0			
1.2-Dichloroethane	5.0	ug/L	< 5.0			
2-Butanone	20.	ug/L	< 29.			
1.1.1-Trichloroethane	5.0	ug/L	< 5.0	+ ÷		
Carbon tetrachloride	5.0	ug/L	< 5.0.			e es
Vinyl acetate	20.	ug/L	< 20.	• •		•-
Bromodichloromethane	5.0	ug/L	< 5:0			e-e-
1.2-Dichloropropane	5.0	ug/L	< 5.0	••	⇔ , ⇒	••
cts=1,3-Dichloropropene	5.0	ug/Ľ	< 5.0			
Trichloroethene	5.0	ug/L	170	••	••	••
Dibromochloromethane	5.0	ug/Ł	< 5.0			
1.1.2-Trichloroethane	5.0	ug/L	< 5.0	4 4		••
Benzene	5.0	ug/L	< 5.0			-0. -0-1
2-Chloroethyl vinyl ether	10.	uġ/L	< 10.	••	••	••
trans-1_3-Dichloropropene	5.0	ug/L	< 5.0			
Bromoform	5.0	ug/L	< 5.0	₩.	•=	
4-Methy1-2-pentanone	20.	ug/L	< 20.			
2-Hexanone	20.	ug/L	< 20.	••	.,	••
Tetrachloroethene	5.0	ug/L	160			- -
1.1.2.2-Tetrachloroethane	5.0	ug/L	< 5.0	••	••	••
ToTuene	5.0	ug/L	< 5.0		4 4	
Chlorobenzene	5.0	ug/L	< 5.0	••		••
EthyThenzene	5.0	ug/L	< 5.0			-
Styrene	5.0	ug/L	< 5.0	••	• •	
Xylenes (total)	5.0	ug/L	< 5.0			
1.3-Dichlarobenzene	10.	ug/L	< 10.	•••	••	••
E.A-Dichiorobenzene	10.	ug/L	< 10.		_	_
1.2-Dichlorobenzene	10.	ug/L	< 10.		• •	••
Notes:						

Notes:

NEI/GTEL Tampa. FL

F7100092:9

ANALYTICAL RESULTS

login Number:

F7100092

roject ID (number): 100212

Project ID (name): TEXACO TUTU Volatile Organics

Method: EPA 8240 Matrix: NotPres AQ

NEL/GIEL Sample Number Client ID. DUPLICATE Date Sampled 10/08/97

Date Analyzed

10/20/97

Dilucton Factor

Reporting

Limit

Units

Concentration:

Analyte Notes: (continued)

lution Factor:

Dilution factor indicates the adjustments made for sample dilution.

"Test Methods for Evaluating Solid Waste. Physical/Chemical Methods". SN-846. Third Edition including Update 1. Analyte list modified to include additional compounds.

NEI/	GTEL	~ " TA	MF	PA, I	FL 3	361	SITY 2	CE	NTE	:RI	ŌRI	VE			, .	C	FIA NE	IN A	-Ol NA	-C LY	US SIS	TC S R	D) EC	T H)UE	EC S1	OF	D	!.					i			4	Su	96		ſ
ENVIRONMENTAL	LABORATORIES, INC.	ં (8	13)	979	J-50	5 <u>2</u>															W.		A	NA	17:	S	ति	'nΪ	(1)			V.	獭		Tal.		310	iii:	TIV.	1
Company Name:	1					Pho	onė	#4	54-	98	5-	104	क्र			73988	A		N THE	SEA SEA	***	A PARK	300.0	12.02	<u> </u>	3 L: 31	<u> </u>	1	1	200	1	MXG	3735-71	4630	44 -71 G	1223	Ť	1	1	İ
Fluor Danie	16tI					FA	X #:			. `	,							· •		-	- 1	- 1							-		<u>e</u>	П					- 1			ı
Compony Addros	101	,				Site	e Lo	call	on: "	$\overline{\tau}$	T	ن ن	i U:	S.V.I			題	ea L					l				8260 🗆		İ	ام	품	PAI		D.			<u> </u>	1	n	١
5553 Rave	nsivand Rid.	Pr. Ye	3 .	, 60.5									, ~ ,				with MTBE	Screen		8	l						(+15)	(+25) D	ı	Herbicides 🗆	Pest 🗆 Hem 🖸	TAL D RCRAD		7421 🗖 6010 🗖		n		À	9	I
Project Manager:						Clie	ent F	roj	ect I	D: (#)	_1	00	313		ا ا	3	Diesel 🗆		SM-503			Ö			ļ	Ŧ	÷		ğ	Ď	FALE		210		🗖 Flash Point 🗅 Reactivity 🗓		7	0	l
Dale McFa	Mand					(NA	ME)	10	XC	110		U	tu				Œ						502.2	:			O NBS	O NBS	1		□ Semi-VOA □		_ [7.5		teact		Ake.	4	I
i attest that the pro- procedures were us	per lield sämpling)				Sar	mple	r N	amp	P(Pr	int)):				Ę	5	BS □	(SIC)	0413.20		504	EPA			É		믜		esticides 🗆		Pollutant	STLCD	83		ö	X	4	- [ı
collection of these	samples.						101	14	H_{2}	PU.	$\overline{\mathbf{U}}$	SU	10	?		*	SUO A	ପ୍ର	§S)	Ö	8	á		0		8	Ç	É		ag	Ö	y Po	IS C	á		Poin	₹03	ส		١
				Ma	atrix				M	leth	od	•	1	Samp	ling	202	20	GC/FID	Profile (SIMDIS)	413	□ SM 503 □		503.1	EPA 8010	EPA 8020□	8080	624/PPL [] 8240/TAL	□ 8270/TAL	EPA 610 □ 8310 □	Ö	TCLP Metals □ VOA	Priority	IS E	Lead 239.2 □ 200.7 □ 7420 □	٦	tash	٦			
Field	GTEL	19			ŀ		_		Pre	sei	rve	d				0	Į.	oms (<u>و</u> و	asa		D D		Ē		8	걸	ត្ត	8	TOX Metals	as I	- XI	H	20	ead			=2	1	1
Sample	Lab#		<u>.</u>	ı	H	팋	æ						œ.			602	Gas	Can Can	Carb	ညီ ပြ	R 41	y 504	24.2	601 []	202	E08 □	24/	625/PPL	Š	×	Met	Meta	Meta	g	길	SIVIL	7C8	-	1	١
ID	'(Lab Use) only	Ś	WATER		SLUDGE	PRODUCT	OTHER	ᅙ	S	ŠŽ.	띮	UNPRE. SERVED	計	DATE	TIME I	Ă	BTEX/Gas	Q.	Varo	Oil and	TPH//R 418.1	EDB by	EPA 524.2	EPA 6	EPA 602 🗆	EPA (EPA (EPA	A	H	늄	EPAI	CAM Metals	Pag	Organic Lead 🗖	Соповічну	8	山	ļ	١
-Tor. /		C # CONTAINERS	5	<u> </u>	S	-	의	╗	-	픠.	蔶	500	Oe		b:10	m		1	_ <u>_</u>	3	-				- 613	-111							=		1-	<u> </u>	マ			1
TT-6		-11-	뷔	- -	-	\vdash	\dashv	-		-	쉬	-			10:52	_										-		-		_		ļ	<u> </u>		-					-
WM-2		5	H		╀	$\left - \right $	-	-		-	+																						┢		 		3			-
MW-5 MW-3 TT-30 TT-5	<u> </u>	37513	-	-	╁		╟┼			-	-{				11:30	.												-				ļ	 	 			3			-
11.30		[일	- -	-	-		 -	-	-	-	-]	-7-97 3-7-97	11:30				;										_						ļ					1
-11-3		Ы	- -	- -	-	-	-	-	-	-	-													-							:						3			-
		3	-		- -	-	 - -		-		-		\ ₀	27.57 27.57	3.00	1												-					-	 	 		7			-
			-1	╬	-	\vdash	H		-		-	-		237	13/300	<u> </u>	-							-		_						-		1-			ᅻ			-
MW-40		12	-		╢	-		\dashv	-		7			62.5			-			-						<u> </u>							1	-	1-		与		-	-
		131	+	-	-	-	$\left - \right $		\dashv		d			-2-5								-	-	-		 					-	 	-	1-	1-	-	5			
Trip-Black		からる	K	-	- -		\vdash	-	ᆉ	┯┢	¥			797	1111]				\vdash		-		ļ					-			ļ	+-	1-	-		るところ		- -	-
Ophisle		اخت				<u>L</u> .	\mathbf{L}_{i}	OE	CIAL	DE.	TEC		N LI			1	<u> </u>		L		DEA.	AARI	KS:	<u></u>	ـــِـــا	<u> </u>	<u> </u>	L		L		<u>1</u>	<u>.l</u>	ــــــــــــــــــــــــــــــــــــــ	ــــــــــــــــــــــــــــــــــــــ	ــــــــــــــــــــــــــــــــــــــ	1=	<u> </u>		-
TAT Priority (24 hr) 🚨	Special GTEL Contact	il Ha	ndi	ing				al r.	OINL.				/14 L-11	VIII-I						1	• ••-••																			
Expedited (48 hr)	Quote/Contract	·						4 %	•																			·												
7 Business Days D. Other	Confirmation #_	-					. L																	•																_
Business Days 🔲	P.O. #						٤ ١	PE	CIAL	RE	POI	RTIN	IG RI	EQUIRE	MENŢ	8				ı	l.ab	Use	Onl	ly Lo	t #:								Sto	rage	Loc	allor	1			
	QA/QC Level																			ļ							_	_			_									
Blue CLP CLP CLP CLP CLP CLP CLP CLP CLP CLP					-6-		- F	AX	<u> </u>												Wor	rk O	rder	#:		_/		7/2	ice	5	<u>L</u>		<u>3</u> - 3	<u>'<</u>						
l -	Relinquishe	d by 8	fan	or Jean	T	Ī)							n	Pat	٥,) ₁	17	Time) \ \	§ 10		Rec	elve	d by	;														
CUSTOD	Y Believish	اسط	4	ليتز	1-1	_	#		·		. -				1,0	Dat				Time			Rec	elve	d by	:														
RECORE	RECORD Relinquished by:			/	•	•	• .					•																												
	Relinquished by:													Dal	8		-	Tim	е	T		eive	_	Lab	oral	ory:	1	?	,	_	 	.,								
L														· ·	1/0	1/9,	777			. 1	0		Wa	ybill	#				-											_

MAIEL	GTEL		500 MP/					CEN	TEF	.DR			_													₹D	 		-	-1) 	-	-	4	20	9!	-∎	7
FHAINGUNENIV	LABORATORIES, INC.		3) 9		909	2	:		;					•			D A	N.					MA	Ŋ		ili	กับ	:13											
Company Name	I70				ļ	Pho	ne #	. 9	54	<u>'_</u> 9	8	5	100	8				3704		4	- Care		1141	8	30.38		it G	<u> </u>	ASS.	ם	24.68		27.00		1897	MOS PL			18/
Company Addre	ss: .					Site	Loc	ation	Ţ	rt:	. (ハ	UI.	• •		開		-								8260				Pest 🖰 Herb	TAL D'RCRAD		ם						1
5553 Ravasu	** 7 K7						•		٦ -	-10						Æ	Scr	·	03								(+25)		sepi	Pest	D.F.C		109		ព		[
Project Manager	rland					Cliei Nai	it Pi	rojec C× Nar	t ID: NO	(#) し	Part I	Ø.	हे विका	315	O.W	FID 03	Diesel [D SM-E			502.2			i.O	NBS (+1	D NBS (+2		O Herbicides □	VOAD			37421		eactivity		į		
I attest that the pro procedures were a collection of these	per field sampling used during the					Sam		Nar	ne (I	Print No.): \ <u>\</u> C.1	10	7		with MTBE D	ons PID) Gas □	(SIQWIS	D 413.2	ელე	by 504 [Æ	g	0	'CB only 🗋	624/PPL [] 8240/TAL [] NBS (+15) []	TALD		Sticides 🔾	□ Semi-VOA □	Pollutant	STLC] 7420 E		🗇 Flash Point 🖵 Reactivity	E04			
Field	GTEL	æ		Ma	trix				Mel	hod	'			pling	8020	ydrocart	IS GC/FI	Profile (se 413.1	1 SM	D DBCP	503.1	EPA 8010 🗆	EPA 802	3080 🗆 F	LD 824(625/PPL 🗀 8270/TAL	3310	ats 🗆 Pe	D VOA	- Priority	EOTH.	200.7	ចូ) Flash P	1 1			
Sample ID	Lab # (Lab Use) only	# CONTAINERS	SOIL	AR	SLUDGE	PRODUCT	F 5	S S	HESO	35	UNPRE- SERVED	OTHER (Specify)	DATE	TIME	BTEX 602	BTEX/Gas Hydrocarbons PID/FID Co with MTBE CO	Hydrocarbons GC/FID Gas □ Diesel □ Screen □	Hydrocarbon Profile (SIMDIS)	Oil and Grease 413.1 🗅 413.2 🗀 SM-503 🗀	TPH/IR 418.1 🗖 SM 503 🗖	ED8 by 504 🗖 D8CP by 504 🗖	EPA 524,2	EPA 601 🗅	EPA 602 [] EPA 8020 []	EPA 608 🗖 8080 🗇 PCB	EPA 624/PP	EPA 625/PP	EPA 610 🗆 8310 🗖	EP TOX Metats 🖸	TCLP Metals D VOA	EPA Metals	CAM Metals	Lead 235.2 🗆 200.7 🗆 7420 🗖 7421 🗖 6010	Organic Lead 🗅	Corrosivity L	0/168			,
TT-4/VE-1		3,	7			-		1	\ -		===		1/1/2					-								- 									-	3			
MW-1		3											685	14/30												·										3			
MW-10	·	3				_ _	_ _	-	.				0-85)		\$																_				۱.	3			
MW-16		3	-	-	-	- -	- -	-	-	<u> </u> -	· 		0892 0897	11:00	<u> </u>									· ;		*****				۰۱	ļ	ļ				=			
TripBlak		2	y -	-	$\left - \right $	-	╁	-	-		-		0,89	10:15	<u> </u>		· 							!	 				ļ		-		ļ			3			
Deplus le		2	- -												<u> </u>	_	-	_								_	_	_				_	_	_	_			_	
t		╂	+	1			+	+	╁	-	-				\vdash	-	-	_	-	-	-		_		_		-	'-	,		-	_	-	-		-	<u> </u>		
				I			1											_	_								-	_						ļ		_	_	_	.
TAT	Specia	Han		L		_	81	PECI	AL D	ETE	ETIC	ON L	IMITS		<u> </u>	<u> </u>	1	ــــــــــــــــــــــــــــــــــــــ	1	REM	ARI	(S:	<u> </u>	<u> </u>			1		_	<u>L</u>		<u></u>	<u> </u>		<u></u>	<u></u>			
TAT Priority (24 hr) Expedited (48 hr) Distributions Days	GTEL Confact Quote/Contract if		imu	'8 		_																	_																
OtherBusiness Days ! []	Confirmation # _ P.O. #					-	SF	ECI/	IL R	EPO	RTII	VG F	EQUIR	EMENT	S				7	Lab	Use	Onl	y Lo	l #:								Sto	rage	Loc	ation	1			
Blue C CLPC	QA/QC Level Other D						F	X.D												Wor	k Or	der	#:		1	Z	بر چونه مر	3 -7	ųγ		خر	ックフ	10	40	5	2			,
POLICEON	Relinquished	by Sa	7	er:			1			•	-				Dat	е	1		Tim	ę	Ī	Rec	eįve	d by	_							<u> </u>						-	
CUSTOD	Relinquished	l bÿ: (T	4		1						·-	· · · · · · · · · · · · · · · · · · ·		Dat	е	 		Tim	6		Rec	elve	d by	:				······		•.			•			·		
<u></u>	Relinguished	l by:					,							10,	Dat		5/1	5	Tim	ө Э (7	Rec Way	elve /bill	d by	Lab	orat	ojyr	3			-	.							

QUALITY CONTROL RESULTS

Login Number:

F7100092

Project ID (number): 100212 Project ID (name): TEXACO TUTU

Volatile Organics Method: EPA 8240

Matrix: NotPres AQ

Conformance/Non-Conformance Summary

(X = Requirements Met

* = See Comments

-- = Not Required)

Conformance Item	Volatile Organics	Semi-Volatile Organics	Inorganics (MT, O	G, WC)
GC/MS Tune				
Initial Calibration	X			
Continuing Calibration	X			
Surrogate Recovery	X			
Holding Time	*			
Method Accuracy	Х .	ë ÷		
Method Precision	X			
Blank Contamination	X			

Comments:

Login Number:

10149711

Project ID (number): Project ID (name):

QUALITY CONTROL RESULTS

Volatile Organics Method: **EPA 8240** Matrix: NotPres AQ

VOA GC/MS Tune Report

,			I Relative	Acceptability Limits	
Analyte			Abundance	Recovery	
EPA 8240	Units:X	QC Batch: 101497I1-1			
Target Mass 5	0		18.3	15- 40%	
Target Mass 7	5		41.6	30- 60%	
Target Mass 9			100.	100-100%	
Target Mass 9	6		6.60 ¿	5- 9%	
Target Mass 1			0.00	0- 2¥	
Target Mass 1			84.0	50-100%	
Target Mass 1			7.20	5- 9%	
Target Mass 1			98.8	95-101%	
Target Mass 1	77		6.70	5- 9%	

Notes:

NEI/GTEL Tampa, FL 10149711:2

F7100092

Login Number: Project ID (number): 100212 Project ID (name):

TEXACO TUTU

QUALITY CONTROL RESULTS

Volatile Organics Method: EPA 8240

Matrix: NotPres AQ

Initial Calibration Verification Sample Summary

	Spike	Check Sample	QC Percent	Acceptability Limits
Analyte	Amount	Concentration	Recovery	Recovery
EPA 8240 Units:ug/1		ch: 1017971-6		
Chloromethane	50.0	53.3	107.	50-204%
Vinyl chloride	50.0	54,6	109.	4-196%
Bromomethane	50.0	49.6	99.2	14-186%
Chloroethane	50.0	53.2	106.	14-230%
1.1-Dichloroethene	50.0	50.3	101.	50.5-149.5%
Methylene chloride	50.0	50.5	101.	60.5-139.5%
1,1-Dichloroethane	50.0	47.0	94.0	72.5-127.5%
Chloroform	50.0	47.2	94.4	67.5-132.5%
1,1,1-TrichToroethane	50.0	47.5	95.0	75-125%
Carbon tetrachloride	50.0	47.8	95.6	73-127%
Benzene	50.0	49.2	98.4	64-136%
1.2-Dichloroethane	50.0	46.5	93.0	68-132%
Trichloroethene	50.0	46.7	93.4	66.5-133.5%
1,2-Dichloropropane	50.0	46.3	92.6	34-166%
Bromodichloromethane	50.0	48.2	96.4	65.5-134.5%
cis-1.3-Dichloropropene	50.0	48.1	96.2	70-130%
Toluene	50.0	48.9	97.8	74.5-125.5%
trans-1,3-Dichloropropene	50.0	48.3	96.6	70-130%
1.1.2-Trichloroethane	50.0	48.4	96.8	71-129%
Tetrachloroethene	50.0	46.5	93.0	73.5-126.5%
Dibromochloromethane	50.0	48.5	97.0	67.5-132.5%
Chlorobenzene	50.0	49.4	98.8	66-134%
Ethylbenzene	50.0	49.8	99.6	59-141%
Xylenes (Total)	150.	148.	98.7	75-165%
Styrene	50.0	50.4	101.	40-160%
1.3-Dichlorobenzene	50.0	49.1	98.2	73-127%
Bromoform	50.0	51.3	103.	45-169%
1.4-Dichlorobenzene	50.0	49.0	98.0	63-137%
1.2-Dichlorobenzene	50.0	49.1	98.2	63-137%
1.1.2.2-Tetrachloroethane	50.0	47.5	95.0	60.5-139.5%

Notes:

QUALITY CONTROL RESULTS

NEI/GTEL Client ID: 100212 Login Number:

F7100092 Project ID (number): 100212

Project ID (name): TEXACO TUTU

Volatile Organics Method: EPA 8240 Matrix: NotPres AQ

Calibration Verification Sample Summary

	Spike	Check Sample	QC Percent	Acceptability Limits
Analyte	Amount	Concentration	Recovery	Recovery
EPA 8240 Units:ug/1	_	Batch: 101497I1-2		
Chloromethane	50.0		83.0	.1-204%
Vinyl chloride	50.0		99.2	4-196%
Bromomethane	50.0		96.4	14-186%
Chloroethane	50.0		112.	38-162%
1.1-Dichloroethene	50.() 58.5	117.	50.5-149.5%
Methylene chloride	50.0	53.1	106.	60.5-139.5%
1.1-Dichloroethane	50.6) 53.8	108.	72.5-127.5%
Chloroform -	50.0	53.9	108.	67.5-132.5%
1.1.1-Trichloroethane	50.(56.1	112.	75-125%
Carbon tetrachloride	50.0	57.1	114.	73-127%
Benzene	50.0) 53.8	108.	64-136%
1.2-Dichloroethane	50.0	53.5	107.	68-132%
Trichloroethene	50.6	A. A A A A A	112.	66.5-133.5%
1.2-Dichloropropane	50.0		107.	34-166%
Bromodichloromethane	50.0		111.	65.5-134.5%
cis-1,3-Dichloropropene	50.0		110.	24-176%
Toluene	50.0		110.	74.5-125.5%
trans-1.3-Dichloropropene	50.0	\$\$\$\$#\$	110.	50-150%
1.1.2-Trichloroethane	50.0		99.2	71-129%
Tetrachloroethene	50.(AN MANAGAN AN	115.	73.5-126.5%
Dibromochloromethane	50.0	· · · · · · · · · · · · · · · · · · ·	110.	67.5-132.5%
Chlorobenzene	50.0		110.	66-134%
Ethylbenzene	50.0		114.	59-141%
Xylenes (Total)	150	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	113.	75-125%
1.3-Dichlorobenzene	50.6		109	73-1273
Styrene	50.0		108.	75-125%
1.4-Dichlorobenzene	50.0		110.	63-137%
Bromoform	50.0		112.	71-129%
1.2-Dichlorobenzene	50.0		105.	63-137%
1.1.2.2-Tetrachloroethane	50.0		105.	60.5-139.5%
EPA 8240 Units:ug/1		Batch:101597I-2	100.	00.0 103.00
Chloromethane :	50.0	an ann a faire agus an an an an an an an an an an an an an	62.2	.1-204%
Vinyl chloride	50.0		81.4	4-196%
Bromomethane	50.0	A NO CARACTER DE CARACTER DE CONTRA DE CONTRA DE CONTRA DE CONTRA DE CONTRA DE CONTRA DE CONTRA DE CONTRA DE C	76.2	14-186*
Chloroethane	50.0	Antaria de la francia de l	92.8	38-162%
1.1-Dichloroethene	50.0	in a company and a company and a company and a company and a company and a company and a company and a company	107.	50.5-149.5%
Methylene chloride	50.(**************************************	95.8	60.5-139.5%
1.1-Dichloroethane	50.		97.8	72.5-127.5%
Chloroform	50.(101.	67,5-132,5%
L.L.I-Trichloroethane			101.	75-125%
AND AND AND AND AND AND AND AND AND AND	50.(//////////////////////////////////////	Variation de la contraction d	73-127%
Carbon tetrachloride	50.(A CARA CARA CARA CARA CARA CARA CARA CA	107.	73-127% 64-136%
Benzene	50.0	anna an an an an an an an an an an an an	102	***************************************
1.2-Dichloroethane	50.0	0 48.4	96.8	68-132%

NEI/GTEL Tampa, FL F7100092:4

QUALITY CONTROL RESULTS

NEI/GTEL Client ID: 100212 Login Number: F7100092 Project ID (number): 100212

Project ID (name): TEXACO TUTU

Volatile Organics Method: EPA 8240 Matrix: NotPres AQ

Calibration Verification Sample Summary

	Spike	Check Sample	QC Percent	Acceptability Limits
Analyte	Amount.	Concentration	Recovery	Recovery
Trichloroethene	50.0	567	113.	66.5-133.5%
1,2-Dichloropropane	50.0	49.9	99.8	34-166%
Bromodichloromethane	50.0	53.5	107.	65.5-134.5%
cis-1.3-Dichloropropene	50.0	52.0	104.	24-176%
Toluene	50.0	53.5	107.	74:5-125.5%
trans-1,3-Dichloropropene	50.0	51.9	104.	50-150%
1.1.2-Trichloroethane	50.0	47.7	95.4	71-129%
Tetrachloroethene	50.0	59.4	119.	73.5-126.5%
Dibromochloromethane	50.0	54.7	109.	67.5-132.5%
Chlorobenżene	50.0	53.9	108.	66-134%
Ethylbenzene	50.0	54.8	110.	59-141%
Xylenes (Total)	150.	164.	109.	75-125%
1,3-Dichlorobenzene	50.0	555	111.	73-127%
Styrene	50.0	52.9	106.	75-125%
1.4-Dichlorobenzene	50.0	55.4	111.	63-137%
Bromoform	50.0	58.5	117.	71-129%
1,2-Dichlorobenzene	50.0	54.2	108.	63-137%
1.1.2.2-Tetrachloroethane	50.0	50.2	100.	60.5-139.5%
EPA 8240 Units:ug/l	QC Bato	:h:101797I-2		
Chloromethane	50.0	50.6	101.	1-204%
Vinyl chloride	50.0	52.9	106.	4-196%
Bromomethane	50.0	53.6	107.	14-186%
Chloroethane	50.0	53.0	106.	38-162%
1.1-Dichloroethene	50.0	52.8	106.	50.5-149.5%
Methylene chloride	50.0	46.8	93.6	60.5-139.5%
1,1-Dichloroethane	50.0	51.6	103.	72.5-127.5%
Chloroform	50.0	51.0	102.	67.5-132.5%
1.1.1-Trichloroethane	50.0	53.9	108.	75-125%
Carbon tetrachloride	50.0	54.1	108.	73-127%
Benzene	50.0	51.6	103.	64-136%
1.2-Dichloroethane	50.0	50.0	100.	68-132%
Trichloroethene	50.0	55.2	110.	66.5-133.5%
1.2-Dichloropropane	50.0	51.8	104.	34-166%
Bromodichloromethane	50.0	53.7	107.	65.5-134.5#
cis-1.3-Dichloropropene	50.0	52.3	105.	24-176%
ToTuene	50.0	54.4	109.	74.5-125.5%
trans-1,3-Dichloropropene	50.0	52.2	104.	50-150%
1.1.2-Trichloroethane	50.0	49.9	99.8	71-129%
Tetrachloroethene	50.0	56.9	114.	73.5-126.5%
Dibromochloromethane	50.0	55.7	111.	67.5-132.5%
Chlorobenzene	50.0	54.0	108.	66-134%
Ethylbenzene	50.0	55.3	111.	59-141%
Xylenes (Total)	150.	165.	110.	75-125%
1,3-Dichlorobenzene	50.0	53.0	106 .	73-127%

NEI/GTEL Tampa. FL F7100092:5

QUALITY CONTROL RESULTS

Login Number:

F7100092 Project ID (number): 100212

Project ID (name): TEXACO TUTU

Volatile Organics Method: EPA 8240

Matrix: NotPres AQ

Calibration Verification Sample Summary

1	Spike	Check Sample	QC Percent	Acceptability Limits
Analyte	Amount	Concentration	Recovery	Recovery
Styrene	50.0	54.6	109.	75-125%
1.4-Dichlorobenzene	50.0	52.9	106.	63-137%
Bromoform	50.0	61.1	122.	71-129%
1,2-Dichlorobenzene	50.0	52.2	104.	63-137%
1.1.2.2-Tetrachloroethane	50.0	49.2	98.4	60.5-139.5%
EPA 8240 Units:ug/l	QC Bate	ch:102097I-2		
Chloromethane	50.0	46.9	93.8	1-204%
Vinyl chloride	50.0	50.1	100.	4-196%
Bromomethane	50.0	48.7	97.4	14-186%
Chloroethane	50.0	52.8	106.	38-162%
1.1-Dichloroethene	50.0	49.0	98.0	50.5-149.5%
Methylene chloride	50.0	47.7	95.4	60.5-139.5%
1,1-Dichloroethane	50.0	50.9	102.	72.5-127.5%
Chloroform	50.0	51.3	103.	67.5-132.5%
1.1.1-Trichloroethane	50.0	51.9	104.	75-125%
Carbon tetrachloride	50.0	53.7	107.	73-127%
Benzene	50.0	51.2	102.	64-136%
1,2-Dichloroethane	50.0	48.9	97.8	68-132%
Trichloroethene	50.0	57.4	115.	66.5-133.5%
1,2-Dichloropropane	50.0	51.9	104.	34-166%
Bromodichloromethane	50.0	55.4	111.	65.5-134.5%
cis-1,3-Dichloropropene	50.0	53.5	107.	24-176%
Toluene	50.0	53.3	107.	74.5-125.5%
trans-1,3-Dichloropropene	50.0	52.8	106.	50-150%
1,1,2-Trichloroethane	50.0	50.9	102.	71-129%
Tetrachloroethene	50.0	55.4	111.	73.5-126.5%
Dibromochloromethane	50.0	58.7	117.	67.5-132.5%
Chlorobenzene	50.0	54.2	108.	66-134%
Ethylbenzene	50.0	54.3	109.	59-141%
Xylenes (Total)	150.	162.	108.	75-125%
1.3-Dichlorobenzene	50.0	55.0	110.	73-127%
Styrene	50.0	54.6	109.	75-125%
1.4-Dichlorobenzene	- 50.0	54.6	109.	63-137%
Bromoform	50.0	57.6	115.	71-129%
1.2-Dichlorobenzene	50.0	54.8	110.	63-137%
1.1.2.2-Tetrachloroethane	50.0	51.4	103.	60.5-139.5%
			,	

Notes:

QUALITY CONTROL RESULTS

Login Number:

F7100092 Project ID (number): 100212

Project ID (name): TEXACO TUTU

Volatile Organics Method: EPA 8240

Matrix: NotPres AQ

Surrogate Results

QC Batch No.	Reference	Sample ID	S1 (DCA)	S2 (TOL)	S3 (BFB)	
Method: EPA 8	240	Acceptability Limits:	76-114%	88-110%	86-115%	
10149711-2	CV10149711A	Cal Verification	106.	101.	103.	
10149711-3	BW10149711A	Method Blank Water	105.	101.	102.	
1015971-2	CV101597A	Cal Verification	95.8	98.3	98.5	
1015971-3	BW101597A	Method Blank Water	93.6	98.2	98.4	
1017971-2	CV101797A	Cal Verification	97.5	100.	102.	
1017971-3	BW101797A	Method Blank Water	100.	101.	101.	
1017971-4	MS10009204	Matrix Spike	93.7	101.	101.	
1017971-5	MD10009204	Matrix Spike Dup	96.7	99.8	102.	
1017971-6	IV101797A	Independent OC Chk	- 98.7	101.	100.	
1020971-2	CV102097A	Cal Verification	96.9	99.3	102.	
1020971-3	BW102097A	Method Blank Water	92.7	98.2	100.	
1020971-4	LW102097A	Lab Ctrl Water	92.3	98.7	102.	
1020971-5	LWD102097A	Lab Ctrl Water Dup	92.6	99.6	103.	
	10009201	TT-6	107.	103.	105.	
	10009202	MW-5	94.7	99.4	101.	
	10009203	MW-3	113.	104.	106.	
	10009204	TT-3D	95.8	99.3	102.	
ė.	10009205	Π-5	98.3	98.9	101.	
	10009206	TT-1	94.8	98.4	99.8	
	10009207	TT-2	95.6	98.9	98.8	
	10009208	MN-4	95.2	98.5	101.	
•	10009209	MW-4D	96.5	99.0	99.9	
	10009210	TRIP BLANK	100.	95.4	99.0	
	10009211	DUPLICATE	9 7.7	99.3	100.	
- -	10009212	TT-4/VE-1	88.5	98.3	103.	
	10009213	MW-1	93.4	98.7	101.	
J	10009214	MV-1D	88.7	109.	95.6	
	10009215	MW-16	92.8	98.9	100.	
	10009216	TRIP BLANK	96.5	98.0	99.7	
	10009217	DUPLICATE	94.9	98.2	99.3	

^{*:} Indicates values outside of acceptability limits. See Nonconformance Summary.

QUALITY CONTROL RESULTS

Login Number: Project ID (number): 100212

F7100092

Volatile Organics

Method: EPA 8240

Project ID (name):

TEXACO TUTU

Matrix: NotPres AQ

Matrix Spike and Matrix Spike Duplicate Results

				Matrix	Matrix	Matrix Spike	Matrix Spike			
		Original	Spikė	Spike	Spike	Duplicate	Duplicate		Acceptab	ility Limits
Analyte		Concentration	Amount	Concentration	Recovery.	<pre>Concentration</pre>	Recovery. %	RPD. %	RPD. %	Recovery, 2
EPA 8240	Units: ug/	'I QC Ba	tch:101	797I-4	GTEL Sa	mple ID:F71000	92-04 C	lient	ID:TT-3D	
1.1-Dichloroethe	ne	< 5.00	50.0	52.2	104.	52.2	104.	0.00	14	61-145%
Trichloroethene		15.0	50.0	62.7	95.4	62.7	95.4	0.00	13	76-125%
Benzene		< 5.00	50.0	50.0	100.	50.0	100.	0.00	11	76-127%
Toluene		< 5.00	50.0	52.0	104.	52.0	104.	0.00	13	76-125%
Chlorobenzene		< 5.00	50.0	51.2	102.	51.2	102.	0.00	13	75-130 z

Notes:

QUALITY CONTROL RESULTS

Login Number:

F7100092

Project ID (number): 100212 Project ID (name):

TEXACO TUTU

Volatile Organics **EPA 8240** Method:

Matrix: NotPres AQ

Laboratory Control Sample (LCS) and Laboratory Control Duplicate Results

		Spike	rcz	LCS	LCS Duplicate	LCS Duplica	ite	Acceptabl	lity Limits	
Analyte		Amount	Concentration	Recovery.	Concentration	Recovery, 5	RPD, %	RPD. %	Recovery, %	
EPA 8240 U	Inits:	ug/L	QC Batch:	02097I-5						•
1.1-Dichloroether	ie	50.0	48.5	97.0	48.5	97.0	0.00	14	61-145%	
Trichloroethene		50.0	50.8	102.	50.8	102.	0.00	13	76-125%	
Benzene		50.0	47.0	94.0	47.0	94.0	0.00	11	76-127%	
Toluene	**************	50.0	49.6	99.2	49.6	99.2	0.00	13	76-125%	
Chlorobenzene		50.0	50.0	100.	50.0	100.	0.00	13	75-130%	

Notes:

Login Number:

F7100092

Project ID (number): 100212 Project ID (name): TEXACO TUTU QUALITY CONTROL RESULTS

Volatile Organics Method: EPA 8240

Matrix: NotPres AQ

Method Blank Results

	QC Batch No:	10149711-3	1015971-3	1017971-3	1020971-3
	te Analyzed:	14-0CT-97	15-0CT-97	17-0CT-97	20-0CT-97
Analyte		Method: EPA 8240	Concentrat	ion: ug/L < 10.0	< 10.0
Chloromethane		< 10.0	< 10.0	< 5.00	< 5.00
Vinyl chloride		< 5.00	< 5.00		< 10.0
Bromomethane		< 10.0	< 10.0	< 10.0	
Chloroethane		< 10.0	< 10.0	< 10.0	< 10.0
1.1-Dichloroethene		< 5.00	< 5.00	< 5.00 < 5.00	< 5.00 < 5.00
Methylene chloride		< 5.00	< 5.00	7 / 7 /	< 5.00 < 5.00
1.1-Dichloroethane		< 5.00	< 5.00	< 5.00	
Chloroform		< 5.00	< 5.00.	< 5.00 .	< 5.00
1.1.1-Trichlorgethane		< 5.00	< 5.00	< 5.00	< 5.00
Carbon tetrachloride		< 5.00	< 5.00	< 5.00	< 5.00
Benzene		< 5.00	< 5.00	< 5.00	< 5.00
1.2-Dichloroethane	:::::::::::::::::::::::::::::::::::::::	< 5.00	< 5.00	< 5.00	< 5.00
Trichloroethene		< 5.00	< 5.00	< 5.00	< 5.00
1,2-Dichloropropane		< 5.00	< 5.00	< 5.00	< 5.00
Bromodichloromethane		< 5.00	< 5.00	< 5.00	< 5.00
cis-1,3-Dichloropropene		< 5.00	< 5.00	< 5.00	< 5.00
Toluene		< 5.00	< 5.00	< 5.00	< 5.00
trans-1.3-Dichloroproper	1e	< 5.00	< 5.00	< 5.00	< 5.00
1.1.2-Trichloroethane		< 5.00	< 5.00	< 5.00	< 5.00
Tetrachloroethene	<i>:</i>	< 5.00	< 5.00	< 5.00	< 5.00
Dibromochloromethane		< 5.00	< 5.00	< 5.00	< 5.00
Chlorobenzene		< 5.00	< 5.00	< 5.00	< 5.00
Ethylbenzene		< 5.00	< 5.00	< 5.00	< 5.00
Xylenes (Total)		< 5.00	< 5.00	< 5.00	< 5.00
1.3-Dichlorobenzene		< 5.00	< 5.00	< 5.00	< 5.00
Styrene		< 5.00	< 5.00	< 5.00	< 5.00
1.4-Dichlorobenzene		< 5.00	< 5.00	< 5.00	< 5.00
Bromoform		< 5.00	< 5.00	< 5.00	< 5.00
1.2-Dichlorobenzene		< 5.00	< 5.00	< 5.00	< 5.00
1,1,2,2-Tetrachloroethar	1ê	< 5.00	< 5.00	< 5.00	< 5.00
Acetone		< 20.0	< 20.0	< 20.0	< 20.0
Carbon disulfide		< 5.00	< 5.00	< 5.00	< 5.00
2-Butanone		< 20.0	< 20.0	< 20.0	< 20.0
Vinyl acetate		< 20.0	< 20.0	< 20.0	< 20.0
2-Chloroethyl vinyl ethe	er	< 10.0	< 10.0	< 10.0	< 10.0
4-Methyl-2-pentanone		< 20.0	< 20.0	< 20.0	< 20.0
2-Hexanone		< 20.0	< 20.0	< 20.0	< 20.0

Notes:

NEI/GTEL Tampa, FL F7100092:10

Southnest Region 10500 University Center Drive, Suite 160 Tompa, Fl. 33612 (813) 979-9092 800-33-GTEI (4835) EAX: 813-979-6914

December 2, 1997

Wendy Leonard
FLUOR DANIEL GTI
5553 Ravenswood Rd
Fort Lauderdale, -L 33312

RE: NEI/GTEL Client ID:

100212

Login Number:

F7110284

Project ID (number):

100212

Project ID (name):

TEXACO TUTU

Dear Wendy Leonard:

Enclosed please find the analytical results for the samples received by NEI/GTEL Environmental Laboratories, Inc. on 11/22/97 under Chain-of-Custody Number(s) 42088.

A formal Quality Assurance/Quality Control (QA/QC) program is maintained by NEI/GTEL, which is designed to meet or exceed the EPA requirements. Analytical work for this project met QA/QC criteria unless otherwise stated in the footnotes. This /nalytical report shall not be reproduced except in full.

GTEL is certified (approved) by the State of Florida under Certification Number HRS E84196, by the State of South Carolina under Certificate Number 96025, and by the State of Tennessee for UST list.

If you have any questions regarding this analysis, or if we can be of further assistance, please call our Customer Service Representative.

Sincerely,

NEI/GTEL Environmental Laboratories, Inc.

J/Peter Barto General Manager

FLUOR DANIEL GTI

→→→ FDGTI FT LAUDER.

@003 @002/005

NEI/GTEL Client ID: 100212

Login Number: F7111284 Project ID (number): 1002.2

Project ID (name): TEXACO TUTU

ANALYTICAL RESULTS

Volatile Organics Method: EPA 8240 Matrix: NotPres AQ

	Reporting	•		•		
Analyte	Limit	Units		Concentration:		
Giloromethane	10.5	e coeff	\$ 10 S	in the second	70 × 10 × 10	
Bromomethane	! 10.	ug/L	< 10.	< 10.	< 10.	
(apyli-ch lojstde	10	TO LE				
Chloroethane	10.	ug/L	< 10.	< 10.	< 10.	The state of the s
Methylene chioride	5.0	VO/L	× 50		5.0	
Acetone	20.	ug/L	· < 20.	< 20.	< 20.	A STATE OF THE STA
ENCOUNT SUSPECIO	5-0-2	709/L	2503	3		
1.1-Dichloroethene	5.0	ug/L	< 5.0	< 5.0	< 5.0	anamatana manamatan di Kotoka.
E.H.O.I cimio coet frame	E 0.	aug/g		550		
1.2-Dichloroethene (total)	5.0	ug/L	31.	23.	< 5.0	
Chioroform	F-2 = 5 0 F-2	Zig/L.	5:0	25 01 M		
1.2-Oichloroethane	5.0	ug/L	< 5.0	< 5.0	< 5.0	er na management om gerner
29 ubanone - S. S. S. S. S. S. S. S. S. S. S. S. S.		2007/14	20	\$420. ····		
1.1.1-Trichloroethane	5.0	ug/L	< 5.0	< 5.0	< 5.0	4 4
Carbon setrach andes	######################################	349/L	30.00	### 5 D ####	5-5-0- H	
Vinyl acetate	20. '	ug/L	< 20.	< 20.	< 20.	Serven alleide abide
Szemedich lecomethane	fire 5.0s	zug/L	£ 125,0:	S 570	25.0°	
1.2-Dichloropropane	5.0	ug/L	< 5.0	< 5.0	< 5.0	a cital litti etiitetimaanise liittii
Eastle a-Direct brooks profile to	5.0	J107	554	5.0.5	5-70 February	
Trichloroethene	1 5.0	ug/L	5.1	< 5.0	< 5.0	4.4
Dibremoch tor unethane	E-25.0-1	**************************************	200 m & 5. C 3500		12 5 5 0 C	
1.1.2-Trichloroethane	5.0	ug/L	< 5.0	< 5.0	< 5.0	- •
Benzane	1011	#10/0	20 20 20		### 520 **	
2-Chloroethyl vinyl ether	10.	. ug/L	< 10.	< 10.	< 10.	
Bromoform !	**************************************	10/1	2255U=24	4550.00 S	# 10.515 B 10.51	
E-Hethy 122 pentapone	5.0	ug/L	< 5.0	< 5.0	< 5.0	
2-Hexanone	20					
Tetrach lorgethene	i ZV	ug/L	< 20.	< 20.	< 20.	
1.1.2.2-Tetrachloroethane	5.0	.ug/(-3	136: THE	29.	< 5.0	
Joi ushe	i 5.u Personernere	ug/L	< 5.0	< 5.0	< 5.0	
Chlorobenzene	5.0	ug/L	< 5.0	24026 5 O	2.156.5.03	
Ethy benzene	i	ug/L Shove all	< 5.0 Zame 5.0	< 5.0	< 5.0	Acceptance of the Anniel State of the State
Styrene	5.0	ug/L	< 5.0	weeks out the		
Kylenes (total)		ug/L	7 5. U	< 5.0	< 5.0	
1.3-Dichlorobenzene	70	ug/L	< 10.	55,02	-50g	A Continue of the State of the
I.A;Otchlorobenzene	10.	40g/L	2 10. 2 2 10: 2 3 3	< 10.	< 10.	A STATE OF THE STA
1.2-Dichlorobenzene	10.	ug/L	< 10	< 10.	< 10.	
kotes:			2.10	- IV.	< 10.	

NEI/GTEL Tampa. FL F7110284:1

FLUOR DANIEL GIT **28**13 979 6914 15:17 12/03/97 CIEL ENV LAB --- FDGTI FT LAUDER **2**004/005 NEI/GTEL Client ID: 100212 ... ANALYTICAL RESULTS Login Humber: F7119284 Project ID (number): 100212 Volatiles Organics Method: TENNESSEE Project ID (name): TEXALO TUTU Matrix: Aqueous · 日報· 部。 Reporting Limit Units Analyte Dilution Factor: Dilution factor indicates the adjustments made for sample dilution. Test Methods for Evaluating Solid Waste: Physical/Chemical Methods . SM-846. Third Edition including Update 1. Gasoline Range Hydrocarbons (TPH)

quantitated by GC/FID mod. 8015 with purge and trap (5030). ...

12/03/97 17:42 13954 985 0114 FLUOR DANIEL GT1 42/03/97 15:16 12/

NEI/GTEL Client ID: 1002.2 Login Number: F7110284

Project ID (number): 1002.2

Project ID (name): TEXACO TUTU

ANALYTICAL RESULTS

Volatile Organics Method: EPA 8240 Matrix: NotPres AQ

Beparting [

Concentration:

Analyte
Motes: (continued)

Dilucton Factors

Diluction factor indicates the adjustments and for sample diluctor.

1

i Limit

EPA 8240:

"Test Motheds for Evoluting Solid Maste Physical/Chemical Methods", SH-846. Third Edition including Update 1. Analyte list modified to include additional compounds.

NEI/GTEL Tampa, FL F7110284:2

42088 0य छ Conceiviny D Pasts Point C Research Storage Location Diganic Lead ☐ 0103 ☐ 1937 ☐ 0537 ☐ 7.002 ☐ 2.865 best 3-COM Medie DOUT SHOW MAD EPA Metals - Priority Pollutant C TAL E ROPA E TICLE Metals II VOA II Semi-VCA II Pest II Herb III ☐ TOX Metals ☐ Pesticides ☐ Herbicides ☐ SE 23 □ O153 □ O19 493 EPA 625/PPL D 8270/TAL D NEIS (+25) D Raceived by Laboratory: 园 CHAIN-OF-CUSTODY RECORD AND ANAL YSIS REQUEST EPA 624/PPL CI 6240/TAL MIS (-15) CI 6260 CI HINALYSISH □ VA 608 □ 8080 □ PC8 ONY □ CPA 602 D EPA 8020 D Received by: Received by: Lab Use Only Lot #: 10 COS A43 13 TOS A43 Work Order #: □ \$1:08 ATE □ 1,508 □ \$142 ATE REMARKS EDB PÀ 204 EI DEC'S PÀ 204 EI DEDS MR DI. 814 RIVHOT 121/97 17:00 ☐ 502-M3 (] S.51+ ☐ 1,51> easen3 bris iiO Hydrocarbon Profile (SIMDIS) C: Hydrocations GC/FLD Gas D Dissel D Screen D BTEX/Gas Hydrocarbons PID/FID D with MTBE ED DIJBTM rliw Closoe Clsoe X9TB 6.04 16:40 SPECIAL REPORTING REQUIREMENTS 6631 Sampling TIME 100212 Wells Phone #: 954-985-1008 04 esp uhro **BPECIAL DETECTION LIMITS** 10-386-126 STAG - Wester-damison がだが (ATHER 10500 UNIVERSITY CENTER DRIVE Site Location: 7476 SCHVED SCHVED Client Project ID: (#) Method Sampler Name (P ***054**H HMOP FAXO HCI TAMPA, FL 33512 **A3HTO** ...Matrix... (813) 979-9092 R 56 102 RIA 33317 Special: Handling GTEL Contact TIOS Helinquished by Bample WATER * CONTAINERS ! うら steed that the proper liet deampling Relinquished by Quote/Contract # CTEL DA/GC Level ENVIRONMENTAL LABORATORIES, ENC Confirmation # procedures were used during the (Lab Use) s Leonard GTEL collector of these samples P.O. # Olher CUSTODY Company Name: RECORD 000 宣之 다 TAT Priority (25 th) Expedited (46 th) Reid Sample ID lowr 7 Business Days Welness Jays Trip BlueD

FLUOR DANIEL

GTEL ENV LAB

GII

--- FDGTI FT LAUDER.

W.

Ø 005/005

12/03/97 12/03/97 17:42

15:17

3954 985 0114 **3**813 979 6914

Tutu Service Station St. Thomas, USVI Fluor Daniel GTI Prolect #100212

SUMMARY OF FIELD ACTIVITIES

September 29, 1997

Fluor Daniel GTI's technician, John Henriquez, checked in with the Texaco Tutu Service Station manager and discussed the work scope scheduled for the following week. John subsequently performed a site inspection to locate the wells scheduled for groundwater sampling.

October 6, 1997

Fluor Daniel GTI's technicians John Henriquez and Ryan Palmer met with Rob Schriener of Aqua Design to discuss the groundwater sampling work scope. Seven monitoring wells were sampled per EPA Test Method 8240. The monitoring wells sampled included: TT-6, MW-5, MW-3, TT-3D, TT-5. TT-1 and TT-2. The groundwater sampling scheme included decon of all sampling equipment, collection of liquid level measurements before and after the well purging, purging of three well volumes from each well followed by a collection of groundwater samples. During the well purging, each well was monitored for pH, conductivity and temperature. The monitoring wells were subsequently sampled utilizing a disposable baller. Subsequent to the groundwater sampling a final liquid level measurement was collected. Table 1 summarizes the liquid level data collected during the groundwater sampling event. Included as Attachment A are copies of the groundwater sampling work sheet for each monitoring well sampled.

October 7, 1997

Three monitoring wells sampled included: MW-4, MW-4D, and TT-4. Monitoring wells (MW-1 and MW-1D) were purged on October 7, 1997; however, these wells were subsequently sampled on October 8, 1997. A duplicate groundwater sample was collected from MW-4. This sample was labeled "duplicate" and was collected on October 7, 1997. Please note that MW-7 could not be located and therefore was not sampled.

October 8, 1997

Monitoring wells MW-1 and MW-1D were sampled per EPA Test Method 8240. In addition, MW-16 was purged and subsequently sampled. A duplicate groundwater sample was collected from MW-16 on October 8, 1997 and was labeled "duplicate" .

November 20, 1997

Fluor Daniel GTI's subcontractor Caribbean Hydro-Tech Inc. met with Aqua Design to collect groundwater samples from the two Vitelco wells (TEW-2 and TEW-2D). Prior to collecting groundwater samples approximately five well volumes were purged from these two wells. Approximately 200 gallons were purged from TEW-2; whereas, 400 gallons were purged from TEW-2D. The monitoring wells were subsequently sampled per EPA Test Method 8240. Please note that pH, conductivity, and temperature were not collected during the purging of these monitoring wells; however, approximately five well volumes were purged from these two wells prior to sampling.

FLUOR DANIEL GTI

December 4, 1997

Fluor Daniel GTI technician John Henriquez collected a full round of liquid levels on December 4, 1997 from the monitoring wells located in the vicinity of the Texaco Tutu Service Station. Table 2 summarizes the liquid level data and the depths to bottom of several monitoring wells. Please note that during the liquid level gauging event the Four Winds I well was pumping at approximately 16 gpm. The pump within this well was temporarily shut down for fifteen minutes to allow for groundwater recharge. After fifteen minutes of recharge a liquid level measurement was obtained and the pump was restarted. Fluor Daniel GTI's technician attempted to collect a liquid level reading from MW-2 several times throughout the day; however, during each attempt this well was covered by an automobile and therefore could not be gauged.

- Due to the presence of pumps and electric/plumbing lines located inside the Four Winds wells, depth to bottom measurements could not be collected because the pump's plumbing and electric lines prevented access to the well bottoms.
- Pursuant to Erier & Kalinowski, Inc.'s facsimile dated December 11, 1997 and a review of the map attached to this facsimile which included the location of VE-3, Fluor Daniel GTI has determined that liquid level data was collected from TT-4 was inadvertently collected from VE-3. In addition, please note that the monitoring well sampled during the groundwater sampling event is also actually VE-3 rather than TT-4.
- included at Attachment B are sketches indicating the location from where liquid levels were collected from the TEW extraction wells.

ATTACHMENT A

PHIMEXACO TUTURIOOZI 2/TULLUPO D97/TEXCAR II

FLUOR BANIEL STI

TABLE 1 LIQUID LEVELS MEASUREMENTS **DURING GROUNDWATER SAMPLING EVENT OCTOBER 6 - 8, 1997**

Tutu Service Station St. Thomas, USVI Fluor Daniel GTI Project #100212

	Daniste Water	Pepihi d Editorie	er Lepth to Water er	Lippinio Plater
Well ID	Saijeu	un eves	liquid Levels after Purging . Walls of \$250	Liquid Lavels after Sampling:
MW-1 *	27.23	43	28.48	28.01
MW-1D*	29.15 ·	87	86.6	84.73
MW-3	16,04	30	17.71	16.98
MW-4	10,61	26	11.88	12,04
MW-4D	11.58	89	13.24	11.88
MW-5	22.71	39	28.38	24.52
MW-16	27.41	46	28.87	27.91
TT-1	14.45	30	15.93	15.11
TT-2	13.92	29	15.81	15.27
TT-3D	15.62	53	17.82	15.87
TT-4 **	12.52	19	18.09	16.63
TT-5	17.59	30	19.11	18.82
TT-6	6.5	13	8.01	7.07

Monitoring wells were purged on October 7, 1997 and were subsequently sampled on October 8, 1997.
 Liquid level data and groundwater sampling data collected for this well was actually for well VE-3.
 Monitoring well MW-7 could not be located, therefore was not sampled.

TABLE 2 LIQUID LEVEL MEASUREMENTS **DECEMBER 4, 1997**

Tutu Service Station St. Thomas, USVI Fluor Daniel GTI Project #100212

100 (100	Danin solda a Re	spinių sokous			
CHT-1	16.06	29			
CHT-4	10.59	25			
CHT-6D	8.97				
Four Winds II	9.87	-			
Four Winds III	4.11				
Four Winds I *	27,62	_			
MW-1	22,95	43			
MW-15	5.77	36			
MW-16	24.46	46			
MW-17	6,03	13			
MW-1D	38.14	87			
MW-2	Not Measured/ Covered by Automobile				
MW-3	14.12	30			
MW-4	8.57	28			
MW-4D	9,67	89			

y Vojili 1885	Chennico Wilmin	
MW-5	21.28	39
MW-6D ,	6.19	-
MW-6R	6.40	22
MW-7	Not Located	
TEW-1D	10.87	65
TEW-1	10.89	41
TEW-2	14.46	41
TEW-2D	14.67	91
Tillet	22.71	
TT-1	13.00	30
TT-2	12.14	29
TT-3D	13,68	53
π4"	11.25	19
TT-5	16,02	30
TT-6	6.31	13

- During the liquid level gauging event this well was pumping at approximately 16 gpm. The pump was temporarily shut down for fifteen minutes following which a liquid level measurement was obtained.
 Liquid level data collected for this well was actually for well VE-3.

ATTACHMENT B

PHI/TEXACO TUTU/100212/TULLUPO.DEF/TEXCARLS

FLUOR DANIEL 671

Vau Support Calle Flow Meter Il location in drill hole

Value Lan Meter/Never of

GROUNDWATER SAMPLING FIELD DATA FORM

CLIENT:

Texaco Caribbean

SAMPLE ID

SITE:

TuTu Service Station

WELL TYPE

ADDRESS: St. Thomas, USVI

CASING DIA (inches)

Date

Sampler:

M8000000000000000000000000000000000000	CUM. VOLUME (gallons	TEMP: (deg. C.)	pH	COND	NOTES:
1	4-3	34	6.93	1500	
2	4.3	32	701	1500	
3	4-3	32	707	1500	
4	·				
5					
Final	12-9	32	707	1500	

PURGE VOLUME TABLE: (area of casing x feet of water column) x 7.48 gal/cubic ft.

CASING DIAMETER	2 INCHES	ainchés	· 6 INCHES
Gallons / Foot	0.163	0.653	1.469

GROUNDWATER SAMPLING FIELD DATA FORM

CLIENT:

Texaco Caribbean

SAMPLE ID

SITE:

TuTu Service Station

WELL TYPE

ADDRESS: St. Thomas, USVI

CASING DIA (inches)

Date

Sampler:

Data No	CUM VOLUME (gallons	TEMP (deg _{is} ⊆)	pH	COND.	Notes:
1	10.3	33	6-83	1500	
2	10.3	32	7-03	1550	
3	10.3	32	7.05	1220	
4					
5	÷				
Final	30.9	32	7.05	1550	•

PURGE VOLUME TABLE: (area of casing x feet of water column) x 7.48 gal/cubic ft.

CASING DIAMETER	2INCHES	4 INCHES	6 INCHES
Gallons / Foot	0.163	0.653	1.469
		1	

CLIENT:

Texaco Caribbean

SAMPLE ID

SITE:

TuTu Service Station

WELL TYPE

ADDRESS: St. Thomas, USVI

CASING DIA (inches)

Date

Sampler:

Data: NG	iedimevojedmeš (galionsi	inEME: (deg=:C)		COND	
1	9.1	33	6.54	1350	
2	9.1	32	7.04	1400	
3	9.1	32	7.08	1400	
4				·	
5					•
Final	27.3	32	7.08	1400	

CASINGIDIAMETER CINCHES CINCHES CINCHES					
Gallons / Foot	0,163	0.653	1.469		

CLIENT:

Texaco Caribbean

SAMPLE ID

+5-3D

SITE:

TuTu Service Station

WELL TYPE

() () () () () () () ()

ADDRESS:

St. Thomas, USVI

CASING DIA (inches)

2 11

Date

10/6/97

Sampler:

TH

Patal No.	COMPANDERME	46∃() 23 36 ((169=253)=	- Ho	COMB	Nonesa
1	5.9	14 1	7.11	1450	
2	5-9	33	7.03	1500	
3	5-9	<i>3</i> 3	7.03	1500	
4					
5					,
Final	17.7	33	7.03	1500	Ģ

EASING DIAMETER	Zinoffsamm.	ANGHES	GINEHES
Gallons / Foot	0.163	0.653	1.469

CLIENT:

Texaco Caribbean

SAMPLE ID

SITE:

TuTu Service Station

WELL TYPE

M W

ADDRESS:

St. Thomas, USVI

CASING DIA (inches)

4"

Date

10/6/97

Sampler:

74

Data No	(gallens: # fil		1704) T	cond:	Neves :
1	8.1	34	7.07	2000	
2	8.1	33	7.03	2000	
3	8-1	34	7-08	7,900	
4			-		
5					
Final	24.3	34	7.08	7000	-

PURGE VOLUME TABLE: (area of casing x feet of water column) x 7.48 gal/cubic ft.

CASING DIAMETER	ZINCHES	Winehes	EINCHES
Gallons / Foot	0.163	0.653	1.469
1			

tow / teamen tube / 100212 / data, thi / a the teamen tube two

CLIENT:

Texaco Caribbean

SAMPLE ID

SITE:

TuTu Service Station

WELL TYPE

ADDRESS: St. Thomas, USVI

CASING DIA (inches)

Date

Sampler:

ata No	CUMEWOLUME:	TEMPS:	ge C	ĆONE:	NOTES
1	10.5	33	6.73	1800	
2	10.5	33	6.72	1800	
3	10.5	32	6.91	1800	
4	·			·	
5			·		
Final	31.5	32	6.91	1800	<i>-</i>

CASINGARMETIC WORLS ARGUS ARGUS GINGLES					
Gallons / Foot	0.163	0.653	1.469		
	<u> </u>				

CLIENT:

Texaco Caribbean

SAMPLE ID

TT-2

SITE:

TuTu Service Station

WELL TYPE

MW

ADDRESS:

St Thomas, USVI

CASING DIA (inches)

411

Date

10/6/97

Sampler:

71

Dáta No	GUME VOEUME (gallons)/J	GONE.	NOTES
1	10	3/	6.96	1000	
2	10	31	7-01	1050	
3	10	31	7.07	(000	
4					
5					
Final	30	3/	7-07	1000	.

PURGE VOLUME TABLE: (area of casing x feet of water column) x 7.48 gal/cubic ft.

CASINGIDIAMETER ZINCHES ZINCHES ZINCHES					
Gallons / Foot	0.163	0.653	1.469		

torior / terracco tuna / 100212 / dette da / c/torio constituitativo

CLIENT:

Texaco Caribbean

SAMPLE ID

SITE:

TuTu Service Station

WELL TYPE

ADDRESS: St. Thomas, USVI

CASING DIA (inches)

Date

Sampler:

Data:	GSM;::VOI-BME		(1) ² /2023	Consequence and the second	NGSTST
1	10	38	6.99	1800	
2	10	36	6.94	1350	
3	10	36	7.01	1850	
4					·
5					
Final	30	36	7.01	1850	÷

GASINGSDAMS	avers :	Kennehes	talkieder
Gallons / Foot	0.163	0.653	1.469
	and the second of the second o		

CLIENT:

Texaco Caribbean

SAMPLE ID

SITE:

TuTu Service Station

WELL TYPE

ADDRESS: St. Thomas, USVI

CASING DIA (inches)

Date

Sampler:

Eatal. No.	saamayoaam== Kaallonsaaaa	reMP	708	:00\00 :00	News S
1	12	33	6.79	1600	
2	12	32	7.00	1600	
3	12	32	7.03	1600	
4					
5		303.			
Final	36	32	7.03	1600	;

CASING BIAMERER SERVICE EXPOSE SERVICE					
Gallons / Foot	0.163	0.653	1.469		

CLIENT:

Texaco Caribbean

SAMPLE ID

NWYD

SITE:

TuTu Service Station

WELL TYPE

MW

ADDRESS:

St. Thomas, USVI

CASING DIA (inches)

6"

Date

10/7/97

Sampler:

TH

Data No	GEME VOICUME	IEMP	3 /3	COND	NOTES TO THE REPORT OF THE PERSON OF THE PER
1	113	32	7.97	1400	
2	113	31	7.15	1500	
3	1/3	3/	7.07	1500	
4					
5					
Final	339	31	7-07	1500	

PURGE VOLUME TABLE: (area of casing x feet of water column) x 7.48 gal/cubic ft.

CASING PIANETER ZINCHES ZINCHES KEINGHES WORLD WEGINCHES WITH THE					
Gallons / Foot	0.163	0.653	1.469		
h					

trow / tension tutos / 100212./ data.thi / c/tw/lesinco/tuto/twp

CLIENT:

Texaco Caribbean

SAMPLE ID

SITE:

TuTu Service Station

WELL TYPE

ADDRESS: St. Thomas, USVI

CASING DIA (inches)

Date

Sampler:

Data No:	GdM=VOEJME	reMe deg 2		eows	NOTES (***
4	/テ・8	34	7.03	1650	
2	17.8	33	6.17	1600	
3	17.8	33	7.67	1600	
4					
5					
Finel	53.4	33	7.07	1600	-

Gallons / Foot	0.163	0.653	1.469	

CLIENT:

Texaco Caribbean

SAMPLE ID

MW-10

SITE

TuTu Service Station

WELL TYPE

MW

ADDRESS:

St. Thomas, USVI

CASING DIA (inches)

6"

Date

10/7/97

Sampler.

TH

	edM≈V@EJME Sallons:::•••••	· = Mix · · · · · · · · · · · · · · · · · · ·	of	COND.	No. 15
1	84	i.			
2	84	32	7-01	1500	
3	84	32	7.07	1500	
4					
5					
Final	252	32	7.07	1500	•

CASING DIAME ER	ZINGHESIPER	E ENGRES -	SANGHES CONTRACTOR
Gallons / Foot	0.163	0.653	1.469

CLIENT:

Texaco Caribbean

SAMPLE ID

MW-16

SITE:

TuTu Service Station

WELL TYPE

MW

ADDRESS:

St. Thomas, USVI

CASING DIA (inches)

6"

Date

10/8/97

Sampler:

TH

Data. No	Galigns (Galigne	TEMP		GOND:	Nextes
1	26	<i>3</i> 3	7.58	1400	
2	26	30	7-18	1400	
3	26	30	7.16	1400	
4					
5					
Final	78	30	7-16	1400	

PURGE VOLUME TABLE: (area of casing x feet of water column) x 7.48 gal/cubic ft.

CASING DIAMETER	ZINCHES	anees 	SINGHES SINGHES
Gallons / Foot	0.163	0,653	1.469
	<u> </u>		

triny / textico tipu / 100212 / deta_thi / c/gw/textico/deta/fine

CLIENT: Texaco Caribbean SAMPLE ID TEW-2

SITE: TuTu Service Station WELL TYPE VE WELLS

ADDRESS: St. Thomas, USVI CASING DIA (inches)

Date 1/20/97
Sampler: Wes Jam's on Caribbean Humo feel

Da- No	GUMTVOGUME Malibris	REMP	piesiaus Til	COMP	NOTES TO THE
1	40	_	<u>.</u>	_	
2	40				
3			-		
4	40		_		
5	40		· · · · · · · · · · · · · · · · · · ·		
	40		—		
Final	200				3

CASINGDIAMENE	SEING JEE	Zalvichesam de de	(Single Second)
Gallons / Foot	0.163	0,653	1.469
1			

CLIENT:

Texaco Caribbean

SAMPLE ID

SITE:

TuTu Service Station

WELL TYPE

ADDRESS:

St. Thomas, USVI

CASING DIA (inches)

Date

Sampler:

oata No	(GRIMS VOLUMES Agallons	TIEME	68 ²	COND	Menes:
1	100	-			Stallow wen pumped 3x rate glaspwell
2	100		~		of our
3	100				
4	100	_			
5			·		•
Final	46D				÷

CASING DIAMETER	ZINCHES	VEREE E	રસાયાએકોર્કેટ કર્યા (જે.મેર્કેટ)
Gallons / Foot	0.163	0.653	1.469